Angstrom to Pace Converter
Convert angstroms to paces with our free online length converter.
Quick Answer
1 Angstrom = 1.312336e-10 paces
Formula: Angstrom × conversion factor = Pace
Use the calculator below for instant, accurate conversions.
Our Accuracy Guarantee
All conversion formulas on UnitsConverter.io have been verified against NIST (National Institute of Standards and Technology) guidelines and international SI standards. Our calculations are accurate to 10 decimal places for standard conversions and use arbitrary precision arithmetic for astronomical units.
Angstrom to Pace Calculator
How to Use the Angstrom to Pace Calculator:
- Enter the value you want to convert in the 'From' field (Angstrom).
- The converted value in Pace will appear automatically in the 'To' field.
- Use the dropdown menus to select different units within the Length category.
- Click the swap button (⇌) to reverse the conversion direction.
How to Convert Angstrom to Pace: Step-by-Step Guide
Converting Angstrom to Pace involves multiplying the value by a specific conversion factor, as shown in the formula below.
Formula:
1 Angstrom = 1.3123e-10 pacesExample Calculation:
Convert 10 angstroms: 10 × 1.3123e-10 = 1.3123e-9 paces
Disclaimer: For Reference Only
These conversion results are provided for informational purposes only. While we strive for accuracy, we make no guarantees regarding the precision of these results, especially for conversions involving extremely large or small numbers which may be subject to the inherent limitations of standard computer floating-point arithmetic.
Not for professional use. Results should be verified before use in any critical application. View our Terms of Service for more information.
Need to convert to other length units?
View all Length conversions →What is a Angstrom and a Pace?
The Angstrom (symbol Å) is a non-SI unit of length equal to exactly 10⁻¹⁰ meters (one ten-billionth of a meter) or 0.1 nanometers (nm). While not part of the modern International System of Units (SI), it remains widely used in various scientific fields due to its convenient scale for atomic and molecular dimensions.
The Angstrom provides a direct way to express sizes at the sub-nanometer level without resorting to fractions or powers of ten. For example, expressing a carbon-carbon bond as "1.54 Å" is more intuitive than "0.154 nm" or "154 pm" for scientists working at the atomic scale.
Relationship to other units:
- 1 Angstrom = 0.1 nanometers (nm)
- 1 Angstrom = 100 picometers (pm)
- 1 Angstrom = 0.0001 micrometers (μm)
- 10 Angstroms = 1 nanometer
- 10 billion Angstroms = 1 meter
Special character note: The proper symbol is Å (capital A with a ring above), not simply "A". This distinguishes it from amperes (A) and other uses of the letter A in scientific notation.
Convert Angstroms to Other Units →
The Pace is a unit of length based on the distance covered by a human step. Its definition is highly variable and depends heavily on context, often referring to either a single step or a double step.
- Single Step Pace: Often informally estimated as the distance from the heel of one foot to the heel of the next foot in a normal walking stride. Common estimations range from 2.5 to 3 feet (ft) or approximately 0.75 to 0.9 meters (m). This is sometimes simply called a 'step' or 'stride'.
- Double Step Pace (Roman Pace): Historically, the most significant definition was the Roman passus, which measured the distance from the heel of one foot to the point where the same foot touches the ground again (i.e., two steps). This was standardized as 5 Roman feet, roughly 1.48 meters or 4.86 feet.
Due to its inherent variability and dependence on individual gait and terrain, the pace is not a standardized unit for precise measurement.
Note: The Angstrom is part of the imperial/US customary system, primarily used in the US, UK, and Canada for everyday measurements. The Pace belongs to the imperial/US customary system.
History of the Angstrom and Pace
The Angstrom unit is named after the Swedish physicist Anders Jonas Ångström (1814–1874), one of the founders of the science of spectroscopy. Ångström made groundbreaking contributions to understanding electromagnetic radiation and atomic emission spectra.
In 1868, Ångström published a chart of the solar spectrum, expressing the wavelengths of electromagnetic radiation in sunlight as multiples of 10⁻¹⁰ meters. This scale proved extraordinarily convenient for expressing:
- Atomic radii (typically 0.5-3 Å)
- Chemical bond lengths (typically 1-2 Å)
- Wavelengths of X-rays (1-10 Å)
- Crystal lattice spacings (2-10 Å)
The Angstrom quickly became the standard unit in crystallography, chemistry, and atomic physics throughout the early 20th century. X-ray crystallography, developed by Max von Laue, William Henry Bragg, and William Lawrence Bragg in the 1910s, relied heavily on Angstrom measurements for determining crystal structures.
When the International System of Units (SI) was established in 1960, the Angstrom was officially deprecated in favor of:
- Nanometer (nm) = 10⁻⁹ m (preferred for 0.1-100 nm scales)
- Picometer (pm) = 10⁻¹² m (preferred for atomic-scale measurements)
Despite this official change, the Angstrom persists robustly in scientific literature for several reasons:
- Historical data: Decades of crystallography and spectroscopy literature use Angstroms
- Convenient scale: Atomic dimensions typically fall in the 0.5-5 Å range—easy to work with
- Established conventions: Many scientific fields developed their nomenclature around Angstroms
- Software and databases: Crystallographic databases (PDB, CIF) often default to Angstroms
Today, you will find Angstroms in:
- Protein Data Bank (PDB) files for biomolecular structures
- X-ray diffraction data and crystallographic information files (CIF)
- Chemistry textbooks for bond lengths and atomic radii
- Materials science publications for thin film thickness and surface studies
Learn More About Scientific Units →
The pace is one of the most ancient and intuitive units of length, used across numerous cultures due to its direct link to human locomotion.
- Ancient Rome: The Romans formalized the passus (double step) as 5 pedes (Roman feet). This unit was fundamental to their system, with 1000 passus forming the Roman mile (mille passus), which heavily influenced the definition of the mile in later systems.
- Military Usage: Throughout history, armies used paces (both single and double) for marching cadence, estimating distances, and measuring fortifications or camp layouts. Standardized step lengths were often drilled.
- Informal Measurement: Before widespread standardized rulers and tapes, pacing was a common way for individuals to estimate lengths and distances for land, construction, or travel.
The pace gradually fell out of official use with the rise of standardized systems like the Imperial system (feet, yards) and the Metric system (meters), which offered greater precision and consistency.
Common Uses and Applications: angstroms vs paces
Explore the typical applications for both Angstrom (imperial/US) and Pace (imperial/US) to understand their common contexts.
Common Uses for angstroms
1. Crystallography
Crystallographers use Angstroms as the standard unit for crystal structure determination via X-ray, neutron, or electron diffraction. The spacing between atomic planes (d-spacings) in crystals typically ranges from 1-10 Å, making the Angstrom the natural unit. Crystallographic Information Files (CIF) and crystallography software default to Angstrom units.
Convert Crystal Measurements →
2. Atomic and Molecular Physics
Physicists measuring atomic radii, ionic radii, and atomic orbital sizes use Angstroms because typical atomic dimensions fall in the 0.5-5 Å range. Quantum mechanics calculations often output electron densities and orbital sizes in Angstroms for convenient interpretation.
3. Chemistry and Bond Lengths
Chemists specify molecular structures with bond lengths in Angstroms. Chemical databases, molecular modeling software, and computational chemistry programs (like Gaussian, ORCA, and VASP) typically use Angstrom coordinates. This convention allows for easy comparison across decades of chemical literature.
Calculate Molecular Dimensions →
4. Structural Biology
Protein crystallography and cryo-electron microscopy (cryo-EM) express protein structures in Angstroms. The Protein Data Bank (PDB)—the worldwide repository of 3D biological macromolecular structures—uses Angstroms as the standard coordinate unit. Resolutions of protein structures are also reported in Angstroms (e.g., "2.5 Å resolution").
Convert Protein Measurements →
5. X-ray Spectroscopy
X-ray wavelengths naturally fall in the 0.1-100 Å range, making Angstroms the convenient unit for X-ray absorption spectroscopy (XAS), X-ray photoelectron spectroscopy (XPS), and synchrotron radiation experiments. Energy-dispersive X-ray spectroscopy (EDS) also references wavelengths in Angstroms.
6. Thin Film Technology
Materials scientists characterize thin films, coatings, and surface layers in Angstroms, particularly for films thinner than 100 Å (10 nm). Atomic layer deposition (ALD), molecular beam epitaxy (MBE), and physical vapor deposition (PVD) processes often specify thicknesses in Angstroms for precision.
7. Surface Science
Surface scientists studying adsorption, catalysis, and surface reconstruction use Angstroms to measure adsorbate heights, surface step heights (typically 2-4 Å), and interlayer spacings. Scanning tunneling microscopy (STM) and atomic force microscopy (AFM) data are often expressed in Angstroms vertically.
When to Use paces
While obsolete for official measurements, the pace still finds some use:
- Rough Estimation: Used informally to get a quick approximation of distances, such as the length of a room, a garden plot, or walking distances in hiking or orienteering.
- Military & Marching Bands: Concepts related to pace length and cadence remain relevant in drilling and formation marching.
- Historical Context: Understanding the pace (especially the Roman passus) is crucial for interpreting historical texts, military accounts, and measurements related to ancient structures or distances.
- Exercise & Fitness: Step counters (pedometers) measure activity in terms of steps, which are essentially single paces.
Additional Unit Information
About Angstrom (Å)
How many Angstroms are in a meter?
There are 10,000,000,000 (ten billion) Angstroms in one meter (1 m = 10¹⁰ Å). Conversely, 1 Angstrom = 10⁻¹⁰ meters.
To visualize this enormous number: if you lined up 10 billion atoms side by side (each about 1 Å in radius), they would span approximately 1 meter.
Examples:
- 1 meter = 10,000,000,000 Å
- 1 millimeter = 10,000,000 Å
- 1 micrometer = 10,000 Å
- 1 nanometer = 10 Å
How many Angstroms are in a nanometer?
There are exactly 10 Angstroms (Å) in one nanometer (nm). Therefore, 1 Å = 0.1 nm.
This 10:1 ratio makes conversions straightforward:
- 1 nm = 10 Å
- 5 nm = 50 Å
- 0.5 nm = 5 Å
- 0.15 nm = 1.5 Å
Memory trick: Think "A nanometer is 10 Angstroms" (the number 10 is hidden in "ten").
Convert Angstroms to Nanometers →
Is the Angstrom an SI unit?
No, the Angstrom is not part of the International System of Units (SI). The official SI unit for length at this scale is:
- Nanometer (nm) = 10⁻⁹ m (for 0.1-1000 nm scales)
- Picometer (pm) = 10⁻¹² m (for atomic-scale measurements)
Relationship: 1 Å = 0.1 nm = 100 pm
The SI system officially deprecated the Angstrom in 1960, but it remains widely used in crystallography, chemistry, and physics due to historical convention and its convenient scale for atomic dimensions.
Why is the Angstrom still used if it is not an SI unit?
The Angstrom persists due to:
1. Historical Convention: Decades of scientific literature (1868-present) use Angstroms. Converting all historical data would be impractical.
2. Convenient Scale: Atomic radii typically range from 0.5-3 Å—easy whole numbers. In nanometers, these become 0.05-0.3 nm (more decimal places).
3. Established Databases: Major scientific databases default to Angstroms:
- Protein Data Bank (PDB): all coordinates in Angstroms
- Crystallographic Information Files (CIF): lattice parameters in Angstroms
- Chemical structure databases: bond lengths in Angstroms
4. Software Defaults: Most crystallography and molecular modeling software uses Angstroms as the default unit.
5. Intuitive Communication: Saying "1.5 Angstroms" is often clearer than "150 picometers" or "0.15 nanometers" in research discussions.
What fields commonly use Angstroms?
The Angstrom remains common in:
Primary fields:
- Crystallography: X-ray, neutron, and electron diffraction for crystal structure determination
- Structural Biology: Protein and nucleic acid structure determination (PDB files)
- Chemistry: Molecular geometry, bond lengths, and computational chemistry
- Atomic Physics: Atomic radii, orbital sizes, and spectroscopy
Secondary fields:
- Materials Science: Thin films, surface science, and nanostructures
- Spectroscopy: X-ray wavelengths and absorption spectra
- Microscopy: Electron microscopy and scanning probe microscopy
- Semiconductor Physics: Historical or informal references to feature sizes
Compare Different Scientific Units →
How do you type the Angstrom symbol (Å)?
Typing the proper Angstrom symbol Å varies by platform:
Windows:
- Hold Alt and type 0197 on numeric keypad: Å
- Or use Character Map application
Mac:
- Option + Shift + A: Å
Linux:
- Compose key + A + A: Å
- Or Ctrl + Shift + U, then type 00C5, then Enter
HTML/Web:
- HTML entity:
Å→ Å - Unicode:
Å→ Å
LaTeX:
\AAor\r{A}→ Å
Microsoft Word:
- Insert → Symbol → select Å
- Or AutoCorrect: type (A) and it may convert automatically
If the symbol is unavailable, write "Angstrom" or abbreviate as "Ang" in informal contexts.
What is the difference between Angstrom and picometer?
An Angstrom (Å) equals 10⁻¹⁰ meters, while a picometer (pm) equals 10⁻¹² meters. This means 1 Angstrom = 100 picometers.
Scale comparison:
- Angstrom scale: atomic radii, bond lengths (0.5-5 Å = 50-500 pm)
- Picometer scale: ultra-precise bond length measurements, nuclear radii
Examples:
- Hydrogen atom radius: 0.53 Å = 53 pm
- C-H bond length: 1.09 Å = 109 pm
- C-C single bond: 1.54 Å = 154 pm
Usage differences:
- Angstroms: Traditional in chemistry and crystallography (though not SI-compliant)
- Picometers: Official SI unit, required by some journals and standards bodies
Many scientists prefer Angstroms for convenience (whole numbers), while formal SI publications require picometers or nanometers.
Convert Angstroms to Picometers →
How is Angstrom used in protein crystallography?
In protein crystallography, the Angstrom is the standard unit for:
1. Atomic Coordinates: PDB files list x, y, z coordinates of every atom in Angstroms.
2. Resolution: The quality of diffraction data is expressed in Angstroms:
- High resolution: <1.5 Å (individual atoms clearly visible)
- Medium resolution: 1.5-3.0 Å (backbone and side chains visible)
- Low resolution: >3.0 Å (overall fold visible, details limited)
3. Bond Lengths: Standard bond lengths used for structure refinement:
- C-C: 1.54 Å
- C-N: 1.47 Å
- C-O: 1.43 Å
4. Crystal Lattice: Unit cell dimensions (a, b, c axes) are given in Angstroms, typically 50-200 Å.
5. B-factors: Atomic displacement parameters are in Ų (square Angstroms).
Example: "The structure was solved at 2.1 Å resolution with unit cell dimensions a=62.3 Å, b=78.5 Å, c=91.2 Å."
Convert Crystallography Units →
Can I convert Angstroms to inches?
Yes, but it is extremely impractical. Angstroms measure atomic scales, while inches measure everyday objects—a difference of 10 billion!
Conversion: 1 Angstrom = 3.937 × 10⁻⁹ inches (about 0.000000004 inches)
Or inversely: 1 inch = 254,000,000 Å (254 million Angstroms)
Example: A carbon atom with radius 0.77 Å = 0.000000003 inches. This is why scientists use metric units—Angstroms, nanometers, and picometers are far more practical for atomic-scale work.
Convert Angstroms to Practical Units →
Why is it called Angstrom and not Ångström?
The English spelling "Angstrom" is a simplified version of the Swedish name "Ångström" to accommodate keyboards and alphabets without special characters.
Proper Swedish spelling: Anders Jonas Ångström (with the Swedish letter "Å")
Common variations:
- Angstrom (English, without diacritics)
- Ångström (Swedish/original spelling)
- Ångstrom (mixed form)
All refer to the same unit and the same physicist. The symbol Å remains universal across languages, representing both the unit and the first letter of Ångström's name (with the ring above).
In scientific writing, either "Angstrom" or "Ångström" is acceptable, though the simplified "Angstrom" is more common in English-language publications.
About Pace (pace)
How long is a pace?
There is no single standard length for a "pace".
- An informal single step pace is often estimated at 2.5 to 3 feet (0.75 to 0.9 meters).
- The historical Roman pace (passus) was a double step, standardized at 5 Roman feet (approx. 1.48 meters or 4.86 feet). Always clarify which definition is being used.
What is the difference between a pace and a Roman pace?
A "pace" is ambiguous. It can mean a single step (variable length, ~2.5-3 ft) or a double step. The Roman pace (passus) specifically refers to the double step standardized at 5 Roman feet (~1.48 m).
What is the difference between a pace and a step or stride?
Often, "step" or "stride" refers to the distance covered by a single movement of one foot forward (heel-to-heel or toe-to-toe). "Pace" can mean this, but it can also refer to the Roman double step (passus). The ambiguity makes "step" or "stride" slightly clearer when referring to a single foot movement.
How many paces are in a mile?
This depends on the definition of "pace":
- Using the Roman pace (passus): The Roman mile (mille passus) was defined as 1000 paces (double steps).
- Using an informal single step pace: If we estimate a single step pace at 2.5 feet, a statute mile (5280 feet) would contain 5280 / 2.5 = 2112 single paces. If estimated at 3 feet, it would be 5280 / 3 = 1760 single paces. This is highly approximate.
Is the pace an SI unit?
No, the pace is not an SI unit. It is an ancient, non-standardized, anthropomorphic unit. The SI unit for length is the meter (m).
Is the pace still used today?
The pace is not used for any official, scientific, or trade measurements today due to its lack of standardization. Its use is confined to informal distance estimation, historical study, and contexts like military drilling or fitness tracking (as steps).
Conversion Table: Angstrom to Pace
| Angstrom (Å) | Pace (pace) |
|---|---|
| 0.5 | 0 |
| 1 | 0 |
| 1.5 | 0 |
| 2 | 0 |
| 5 | 0 |
| 10 | 0 |
| 25 | 0 |
| 50 | 0 |
| 100 | 0 |
| 250 | 0 |
| 500 | 0 |
| 1,000 | 0 |
People Also Ask
How do I convert Angstrom to Pace?
To convert Angstrom to Pace, enter the value in Angstrom in the calculator above. The conversion will happen automatically. Use our free online converter for instant and accurate results. You can also visit our length converter page to convert between other units in this category.
Learn more →What is the conversion factor from Angstrom to Pace?
The conversion factor depends on the specific relationship between Angstrom and Pace. You can find the exact conversion formula and factor on this page. Our calculator handles all calculations automatically. See the conversion table above for common values.
Can I convert Pace back to Angstrom?
Yes! You can easily convert Pace back to Angstrom by using the swap button (⇌) in the calculator above, or by visiting our Pace to Angstrom converter page. You can also explore other length conversions on our category page.
Learn more →What are common uses for Angstrom and Pace?
Angstrom and Pace are both standard units used in length measurements. They are commonly used in various applications including engineering, construction, cooking, and scientific research. Browse our length converter for more conversion options.
For more length conversion questions, visit our FAQ page or explore our conversion guides.
Helpful Conversion Guides
Learn more about unit conversion with our comprehensive guides:
📚 How to Convert Units
Step-by-step guide to unit conversion with practical examples.
🔢 Conversion Formulas
Essential formulas for length and other conversions.
⚖️ Metric vs Imperial
Understand the differences between measurement systems.
⚠️ Common Mistakes
Learn about frequent errors and how to avoid them.
All Length Conversions
Other Length Units and Conversions
Explore other length units and their conversion options:
- Meter (m) • Angstrom to Meter
- Kilometer (km) • Angstrom to Kilometer
- Hectometer (hm) • Angstrom to Hectometer
- Decimeter (dm) • Angstrom to Decimeter
- Centimeter (cm) • Angstrom to Centimeter
- Millimeter (mm) • Angstrom to Millimeter
- Inch (in) • Angstrom to Inch
- Foot (ft) • Angstrom to Foot
- Yard (yd) • Angstrom to Yard
- Mile (mi) • Angstrom to Mile
Verified Against Authority Standards
All conversion formulas have been verified against international standards and authoritative sources to ensure maximum accuracy and reliability.
National Institute of Standards and Technology — Official US standards for length measurements
Bureau International des Poids et Mesures — International System of Units official documentation
Last verified: December 3, 2025