Foot to Nautical Mile Converter
Convert feet to nautical miles with our free online length converter.
Quick Answer
1 Foot = 0.000165 nautical miles
Formula: Foot × conversion factor = Nautical Mile
Use the calculator below for instant, accurate conversions.
Our Accuracy Guarantee
All conversion formulas on UnitsConverter.io have been verified against NIST (National Institute of Standards and Technology) guidelines and international SI standards. Our calculations are accurate to 10 decimal places for standard conversions and use arbitrary precision arithmetic for astronomical units.
Foot to Nautical Mile Calculator
How to Use the Foot to Nautical Mile Calculator:
- Enter the value you want to convert in the 'From' field (Foot).
- The converted value in Nautical Mile will appear automatically in the 'To' field.
- Use the dropdown menus to select different units within the Length category.
- Click the swap button (⇌) to reverse the conversion direction.
How to Convert Foot to Nautical Mile: Step-by-Step Guide
Converting Foot to Nautical Mile involves multiplying the value by a specific conversion factor, as shown in the formula below.
Formula:
1 Foot = 0.000164579 nautical milesExample Calculation:
Convert 10 feet: 10 × 0.000164579 = 0.00164579 nautical miles
Disclaimer: For Reference Only
These conversion results are provided for informational purposes only. While we strive for accuracy, we make no guarantees regarding the precision of these results, especially for conversions involving extremely large or small numbers which may be subject to the inherent limitations of standard computer floating-point arithmetic.
Not for professional use. Results should be verified before use in any critical application. View our Terms of Service for more information.
Need to convert to other length units?
View all Length conversions →What is a Foot and a Nautical Mile?
The foot is a unit of length in the British imperial and United States customary systems of measurement. Since the international yard and pound agreement of 1959, one foot has been defined as exactly 0.3048 meters, which equals precisely 12 inches or 1/3 of a yard.
The foot is denoted by the symbol ft or by a single prime mark ′ (e.g., 6′ means 6 feet). When combined with inches, the notation uses both symbols: 5′-9″ means 5 feet, 9 inches (69 inches total, or approximately 1.75 meters).
The foot occupies a unique position in the imperial system as the most commonly used length unit for human-scale measurements—distances that relate directly to human body size, living spaces, and immediate environments. While inches handle smaller precision work and miles cover long distances, feet describe the comfortable middle ground of everyday human experience.
A nautical mile (symbol: NM or nmi) is a unit of length specifically designed for marine and air navigation, officially defined as exactly 1,852 meters (approximately 6,076.115 feet or 1.15078 statute miles).
Why Is the Nautical Mile Special?
Unlike arbitrary land-based distance units (statute miles, kilometers), the nautical mile is geometrically derived from Earth's dimensions:
1 nautical mile = 1 minute of arc along any meridian (line of longitude)
This means:
- 60 nautical miles = 1 degree of latitude
- 1,800 nautical miles = 30 degrees of latitude
- 10,800 nautical miles = 180 degrees (equator to pole along a meridian)
Navigation Advantages
This geometric relationship provides critical benefits for navigation:
1. Direct Coordinate Conversion:
- If your ship is at 40°N latitude and sails due north to 41°N, you've traveled exactly 60 nautical miles
- No conversion factors needed—degrees and minutes directly translate to distance
2. Chart Plotting Simplicity:
- Nautical charts have latitude scales on the sides
- Measure distance by comparing to the chart's latitude scale at the same latitude
- One minute of latitude = one nautical mile (exact)
3. Celestial Navigation:
- When using sextants to measure star/sun angles, angular measurements directly convert to distance
- Essential for historical navigation before GPS
4. Universal Consistency:
- The nautical mile works identically at all latitudes (unlike longitude distances, which vary)
- International standard used by all maritime and aviation authorities
Nautical Mile vs. Statute Mile
| Attribute | Nautical Mile | Statute Mile | |-----------|--------------|--------------| | Definition | 1,852 meters (Earth-geometry based) | 1,609.344 meters (historical land measurement) | | Length in Feet | 6,076.115 ft | 5,280 ft | | Basis | 1 minute of latitude arc | Historical English mile (1,000 paces) | | Primary Use | Maritime & aviation navigation | Land distances, road travel | | Ratio | 1 NM = 1.15078 statute miles | 1 mi = 0.86898 nautical miles | | Speed Unit | Knot (NM/hour) | Miles per hour (mph) | | International Standard | Yes (since 1929) | No (U.S., U.K. primarily) |
The Knot: Nautical Speed
A knot is one nautical mile per hour:
- 10 knots = 10 NM/hour = 18.52 km/h = 11.5 mph
- 30 knots = 30 NM/hour = 55.56 km/h = 34.5 mph
Why "knot"? The term comes from 17th-century ship speed measurement using a chip log—a wooden board tied to a rope with knots at regular intervals (typically every 47 feet 3 inches, or 14.4 meters). Sailors would throw the board overboard and count how many knots passed through their hands in a specific time (usually 28 seconds measured by sandglass). This gave an approximate speed in "knots."
Modern Usage: While chip logs are obsolete, "knot" remains the universal maritime and aviation speed unit. Ships' logs, flight plans, weather reports, and international regulations all use knots.
Note: The Foot is part of the imperial/US customary system, primarily used in the US, UK, and Canada for everyday measurements. The Nautical Mile belongs to the imperial/US customary system.
History of the Foot and Nautical Mile
The foot represents one of humanity's oldest measurement units, with origins predating written records.
Ancient Origins: The foot concept emerged independently in multiple ancient civilizations, all based on the approximate length of a human foot. The Egyptian royal cubit (20.6 inches) divided into smaller units approximating foot measurements. The Greek pous measured roughly 11.6 inches, while the Roman pes (foot) standardized at approximately 11.65 modern inches (296 mm).
Roman Influence: When Romans conquered Britain, they brought the pes, which heavily influenced British measurement traditions. The Roman foot divided into 12 unciae (inches), establishing the 12-inch relationship that persists today. Even after the Roman Empire fell, this measurement structure survived in English-speaking regions.
Medieval Variations: Throughout medieval Europe, foot measurements varied dramatically by region and ruler. Different "feet" existed simultaneously—the Tower foot, the London foot, and various guild-specific feet. King Henry I of England (r. 1100-1135) reportedly standardized the yard as the distance from his nose to his outstretched thumb, making the foot one-third of that distance.
Statute Definitions: In 1266, King Henry III's Composition of Yards and Perches defined relationships between feet, yards, and rods for land measurement. The 1324 statute by Edward II attempted further standardization, though regional variations persisted for centuries.
English Standardization: The British Weights and Measures Act of 1824 established the Imperial foot throughout the British Empire. This Imperial foot differed slightly from the US foot after American independence—the US maintained measurements from pre-1824 British standards.
1959 International Agreement: The international yard and pound agreement unified English-speaking countries. The United States, United Kingdom, Canada, Australia, New Zealand, and South Africa agreed that 1 yard equals exactly 0.9144 meters, making 1 foot exactly 0.3048 meters (304.8 mm). This ended over a century of slight differences between US and British feet.
US Survey Foot Retirement: From 1893 to 2023, the United States maintained two different feet—the international foot (0.3048 m exactly) and the US survey foot (0.30480061 m, or 1200/3937 meters). The survey foot was used for land surveys and mapping. On January 1, 2023, the National Geodetic Survey officially retired the US survey foot, making all American measurements use the international foot exclusively.
Aviation Standard: In 1947, the International Civil Aviation Organization (ICAO) standardized altitude measurements worldwide in feet. This remains universal today—even pilots in fully metric countries like France, Germany, and Japan report altitude in feet. This standardization prevents confusion and enhances safety in international aviation.
of the Nautical Mile
Ancient Navigation: The Seeds of Angular Distance (c. 300 BCE - 1500 CE)
Greek Geodesy (c. 240 BCE):
- Eratosthenes calculated Earth's circumference with remarkable accuracy (~250,000 stadia = ~39,375 km, only ~2% error from modern value 40,075 km)
- Established that Earth is spherical and could be measured in angular degrees
- Greek astronomers divided circles into 360 degrees, each degree into 60 minutes, each minute into 60 seconds
Ptolemy's Geography (c. 150 CE):
- Ptolemy created maps using latitude and longitude coordinates
- His calculations of Earth's circumference were less accurate than Eratosthenes' (underestimated by ~30%)
- This error influenced European explorers for over 1,000 years
Medieval Navigation (c. 1000-1500 CE):
- Vikings and Arab sailors navigated using dead reckoning (estimated speed × time) and celestial observations
- No standard distance unit tied to Earth's geometry yet
- Various regional distance measures: leagues, Roman miles, Arabic farsakh, etc.
The Age of Exploration: Linking Angles to Distance (1500-1800)
Navigational Revolution (16th Century):
- Development of portolan charts (Mediterranean sailing charts)
- Invention of cross-staff and backstaff for measuring celestial angles
- Navigators increasingly aware that angular measurements could determine position
The Sextant Era (1731):
- John Hadley (England) and Thomas Godfrey (America) independently invented the sextant
- Allowed precise measurement of angles between celestial objects and horizon (accuracy: ±0.1 minute of arc)
- Enabled celestial navigation: determining latitude by measuring sun's or Polaris's altitude
- Created practical need for distance unit corresponding to angular measurements
Emerging Nautical Mile Variants (1700s):
- British Admiralty Mile: 6,080 feet (based on British measurements of Earth)
- Various European Miles: Different countries defined nautical miles based on their estimates of Earth's circumference
- No international standard yet—created confusion in international navigation
The Problem of Longitude:
- While latitude could be determined astronomically, longitude required accurate timekeeping
- John Harrison's marine chronometer (1760s) solved this, enabling precise position fixing
- Further emphasized need for standardized navigation units
The 19th Century: Toward Standardization
National Definitions: By the mid-1800s, major maritime nations used different nautical miles:
- British Admiralty: 6,080 feet
- United States: 6,080.20 feet (slightly different Earth measurements)
- France: 1,852 meters (using metric system)
- Germany, Italy: Various slightly different values
Geodetic Improvements:
- Better measurements of Earth's shape revealed it's not a perfect sphere but an oblate spheroid (equatorial bulge)
- One minute of latitude varies from 1,842.9 meters at the equator to 1,861.7 meters at the poles
- Average: approximately 1,852 meters
International Trade and Navigation:
- Steamship era (mid-1800s) increased international maritime traffic
- Inconsistent nautical mile definitions caused practical problems:
- Charts from different countries used different scales
- Navigation calculations required conversion factors
- International maritime law needed standard distances
International Standardization (1929)
The Monaco Conference (1929):
- The International Extraordinary Hydrographic Conference convened in Monaco
- Delegates from major maritime nations attended
- Goal: Establish universal standards for hydrographic charts and maritime navigation
The 1,852 Meter Standard: The conference adopted:
- 1 international nautical mile = 1,852 meters (exactly)
- This equaled approximately 6,076.115 feet
- Based on the average length of one minute of latitude over Earth's entire surface
- Compromise between various national definitions
Why 1,852 meters?
- Earth's mean circumference: ~40,007 km (at the poles and equator average)
- 40,007,000 meters ÷ 360 degrees ÷ 60 minutes = 1,852.0 meters/minute (approximately)
- Close to French definition (already 1,852 m), easing French adoption
- Reasonably close to British/U.S. definitions (minimizing disruption)
Rapid International Adoption:
- International Hydrographic Organization (IHO) promoted the standard
- International Civil Aviation Organization (ICAO) adopted it for aviation (founded 1944)
- By the 1950s-1960s, virtually all maritime and aviation authorities worldwide used 1,852 meters
- United States officially adopted it in 1954 (though U.S. Coast and Geodetic Survey used it earlier)
- United Kingdom adopted it in 1970, replacing the Admiralty mile
Modern Era (1950-Present)
Aviation Adoption:
- Civil aviation adopted nautical miles and knots as standard units
- Flight plans, air traffic control, pilot reports all use NM and knots
- Altitude measured in feet, but horizontal distances in nautical miles
GPS and Electronic Navigation:
- GPS coordinates use degrees, minutes, and seconds—directly compatible with nautical miles
- Modern electronic chart systems (ECDIS - Electronic Chart Display and Information System) use nautical miles
- Despite metrication in many countries, nautical mile remains universal for navigation
Why Not Kilometers?
- Some advocated replacing nautical miles with kilometers (metric system)
- Arguments against:
- Nautical mile's geometric relationship to latitude is uniquely valuable
- All existing charts, regulations, and equipment use nautical miles
- Aviation and maritime are inherently international—need consistent units
- Retraining entire global maritime and aviation workforce would be enormously expensive
- Result: Nautical mile remains entrenched, with no serious movement to replace it
Legal Status:
- Recognized by International System of Units (SI) as a "non-SI unit accepted for use with the SI"
- Defined in terms of SI base unit (meter): 1 NM = 1,852 m (exact)
- Official unit in international maritime law, aviation regulations, territorial waters definitions
Common Uses and Applications: feet vs nautical miles
Explore the typical applications for both Foot (imperial/US) and Nautical Mile (imperial/US) to understand their common contexts.
Common Uses for feet
Residential Construction and Remodeling
Home construction in America operates in feet for layout and square feet for area calculations. Foundation plans show exterior dimensions (e.g., 40' × 60' house footprint = 2,400 sq ft per floor). Interior walls use standard 8-foot studs for 8-foot ceiling heights, or 9-foot and 10-foot studs for taller ceilings.
Lumber lengths come in 2-foot increments: 6', 8', 10', 12', 14', 16' boards. This modular system allows efficient layout with minimal waste. A wall spanning 16 feet can use a single 16-foot top plate rather than joining shorter pieces.
Plywood and drywall sheets measure 4' × 8' (32 square feet per sheet). With standard 16-inch stud spacing, three studs span 48 inches (4 feet), perfectly matching sheet width. This dimensional coordination throughout the building industry stems from foot-based planning.
Standard door heights are 6'8" (80 inches), accommodating people up to about 6'5" with clearance. Door widths vary: 2'6" (30"), 2'8" (32"), 3'0" (36"). Window rough openings are specified in feet and inches: 3'0" × 4'0" window.
Architectural Design and Floor Plans
Architects draw floor plans at scales based on feet: 1/4" = 1'0" (common residential) or 1/8" = 1'0" (larger buildings). Blueprint dimensions appear as feet-inches notation: 12'-6" means 12 feet, 6 inches (150 inches total).
Room planning uses standard furniture dimensions understood in feet:
- Queen bed: approximately 5' × 6'8"
- King bed: approximately 6'4" × 6'8"
- Sofa: 6-8 feet long
- Dining table (seats 6): 3' × 6'
- Dining table (seats 8): 3'6" × 7'
Designers ensure adequate circulation space: 3 feet minimum for walkways, 4 feet preferred. A 12' × 15' bedroom comfortably fits a king bed with nightstands and leaves walkway space.
Building codes specify requirements in feet: egress windows must have 5.7 square feet of opening, stair landings must be at least 3 feet deep, hallways must be at least 3 feet wide.
Commercial Real Estate and Office Space
Commercial property leasing operates in square feet. Office space leases quote price per square foot annually: $30/sq ft/year means a 1,000 sq ft office costs $30,000 per year ($2,500/month). Retail space commands higher rates, often $40-100+/sq ft/year in prime locations.
Office planning uses square feet per employee: 150-250 sq ft per person including shared spaces, or 50-75 sq ft for individual workstations. A company with 50 employees needs approximately 7,500-12,500 square feet total.
Commercial buildings describe floor plate size in square feet: a 100' × 120' floor plate provides 12,000 sq ft of rentable space per floor. Column spacing (typically 20-30 feet in modern buildings) affects layout flexibility.
Retail space measures street frontage in feet—20 feet, 40 feet, 60 feet of storefront directly influences visibility and foot traffic. Corner locations with frontage on two streets command premium rent.
Swimming and Aquatics
Swimming pools use feet for all dimensions. A typical residential pool might measure 16' × 32' (512 sq ft surface area) with shallow end 3'6" and deep end 8'0". Lap pools are typically 8-10 feet wide by 40-50 feet long.
Competition pools follow precise foot-based specifications:
- Short course: 75 feet (25 yards, 6-8 lanes)
- Olympic pool: 164 feet (50 meters, 10 lanes) with 6'6" minimum depth
Pool safety regulations require depth markers at 3', 4', 5', 6', 8', and deeper. "NO DIVING" signs appear in areas less than 9 feet deep. These measurements help swimmers quickly assess safety.
Interior Design and Space Planning
Interior designers work in feet for furniture placement and room flow. Industry standards include:
- Seating area: 8' × 10' minimum for sofa, chairs, coffee table
- Dining area: Allow 3 feet per chair, 3-4 feet circulation around table
- Kitchen work triangle: 12-26 feet total (sum of distances between sink, stove, refrigerator)
- Island clearance: 3-4 feet on all sides for traffic flow
- TV viewing distance: 1.5-2.5× the diagonal screen size
A 12' × 18' living room (216 sq ft) allows space for a seating arrangement, TV console, and traffic flow. A 10' × 10' room (100 sq ft) feels cramped with more than a bed and dresser.
Window treatment specialists measure window width and height in feet and inches to calculate fabric requirements. Curtains typically extend 4-8 inches beyond window frame on each side, requiring precise foot-inch measurements.
Theater and Entertainment Venues
Stage dimensions, screen sizes, and venue layouts use feet:
- Proscenium width: 30-50 feet (typical theater)
- Stage depth: 20-40 feet
- Fly space: 60-80+ feet (above stage for scenery)
- Movie screen width: 40-90 feet (commercial theaters)
- IMAX screen: 72' × 52' (standard), 97' × 76' (largest)
Theatrical lighting positions specify trim height (distance from stage floor to light) in feet: 12', 18', 24'. Sound engineers place speakers based on feet of distance to achieve proper coverage—one speaker per 30-50 feet of venue length.
Venue capacity relates to square footage: 6-7 square feet per person for standing room, 10-12 sq ft per person for chair seating with aisles, 15-20 sq ft per person for banquet seating with tables.
Firefighting and Emergency Services
Fire departments specify equipment reach in feet: 75-foot aerial ladders, 100-foot platform trucks. Building codes restrict height based on fire equipment access—many jurisdictions limit wood-frame construction to 75 feet (roughly 7 stories) due to ladder reach limitations.
Hose lengths standardize at 50 feet or 100 feet. Firefighters calculate distance from hydrant to building entrance in feet to determine hose requirements. Water pressure calculations use feet of elevation: each foot of elevation change requires roughly 0.43 PSI pressure adjustment.
Emergency responders use feet for scene measurements: accident scenes, crime scenes, and disaster areas document positions and distances in feet. "Vehicle came to rest 150 feet beyond point of impact" provides clear spatial understanding.
Landscaping and Irrigation
Landscape contractors measure yards in feet for material calculations and cost estimates. Sod comes in rolls typically 2' × 5' (10 sq ft). Mulch, topsoil, and gravel calculate coverage in square feet at various depths: 1 cubic yard covers 324 sq ft at 1 inch depth, or 81 sq ft at 4 inches depth.
Irrigation system design uses feet for sprinkler spacing: 15-foot spacing for spray heads, 30-40 foot spacing for rotary heads. Drip irrigation calculates emitter placement in feet: 12-18 inches for flower beds, 2-3 feet for shrubs.
Tree planting requires spacing in feet based on mature spread: 15-20 feet apart for small trees, 30-40 feet for large shade trees, 50+ feet for massive specimens. "Plant trees 30 feet from building foundations" prevents root damage to structures.
Property grading specifies slope in inches per foot: 2-3 inches of drop per 10 feet of distance away from house foundations prevents water intrusion.
When to Use nautical miles
of the Nautical Mile in Modern Contexts
1. Commercial Shipping and Maritime Trade
Virtually all ocean-going commerce uses nautical miles:
- Voyage Planning: Routes calculated in nautical miles, speeds in knots
- Fuel Consumption: Ships burn X tons of fuel per nautical mile at Y knots
- Charter Rates: Sometimes calculated per nautical mile traveled
- Port Distances: Official port-to-port distances published in nautical miles
- Shipping Schedules: Container ship services maintain schedules based on NM distances
Industry Standard: International Maritime Organization (IMO) regulations, SOLAS (Safety of Life at Sea) convention, and all maritime treaties use nautical miles.
2. Aviation and Air Traffic Management
Every aspect of aviation navigation uses nautical miles and knots:
- Flight Plans: Filed with distances in NM, estimated time en route
- Air Traffic Control: Controllers vector aircraft using headings and distances in NM
- Minimum Safe Altitudes: Calculated based on terrain within X nautical miles
- Separation Standards: Aircraft must be separated by minimum NM horizontally or feet vertically
- Fuel Planning: Endurance calculated as fuel available ÷ fuel burn per NM
Universal Standard: ICAO standards mandate nautical miles globally. Even countries using metric on land (Europe, Asia) use NM in aviation.
3. Military Operations and Defense
Naval and air forces worldwide use nautical miles:
- Tactical Planning: Mission ranges, patrol areas, weapon ranges all in NM
- Rules of Engagement: May specify engagement zones as X NM from assets
- International Waters: Freedom of navigation operations occur beyond 12 NM territorial limit
- Exercise Areas: Military training areas defined by coordinates with dimensions in NM
Interoperability: NATO and allied forces must use common units—nautical miles ensure coordination.
4. Oceanography and Marine Science
Scientists studying oceans use nautical miles naturally:
- Research Vessel Cruises: Tracks measured in nautical miles sailed
- Acoustic Surveys: Transects for fish surveys measured in NM
- Ocean Currents: Velocities in knots, distances in NM
- Whale Migration: Tracked in nautical miles traveled per day
Coordinate Integration: Scientific data tagged with lat/lon coordinates fits naturally with nautical mile distances.
5. Maritime Law Enforcement and Border Control
Coast guards and maritime police use nautical miles:
- Patrol Areas: Assigned patrol zones measured in square NM
- Pursuit Distances: Hot pursuit laws reference territorial limits (12 NM)
- Smuggling Interdiction: Intercept calculations based on target speed (knots) and distance (NM)
- Fisheries Enforcement: EEZ boundaries (200 NM) patrol and enforcement
6. Marine Charts and Navigation Publications
All official charts use nautical miles:
- Paper Charts: Latitude scale serves as distance ruler (1 minute = 1 NM)
- Electronic Charts (ECDIS): Display distances in NM by default
- Sailing Directions: Describe routes, distances, hazards using NM
- Light Lists: Lighthouse visibility ranges listed in nautical miles
Chart Scales: Often expressed as 1:X where X determines detail level. Common scales like 1:50,000 mean 1 cm on chart = 0.5 km = ~0.27 NM.
7. Weather Routing and Voyage Optimization
Modern shipping uses weather forecasting to optimize routes:
- Weather Routing Services: Calculate optimal track to minimize voyage time and fuel
- Forecast Models: Wind/wave forecasts presented with positions in lat/lon and coverage in NM
- Routing Algorithms: Evaluate alternatives by comparing total NM distance + weather impacts
- Fuel Savings: Avoiding storms may add 50 NM but save days and tons of fuel
Additional Unit Information
About Foot (ft)
How many inches are in a foot?
There are exactly 12 inches in 1 foot. This relationship is fundamental to the imperial measurement system and has remained constant since ancient Roman times, when the pes (foot) was divided into 12 unciae (inches).
The 12-inch division offers mathematical convenience—12 is evenly divisible by 2, 3, 4, and 6, making fractional measurements easier in practical work. You can divide a foot into halves (6"), thirds (4"), quarters (3"), or sixths (2") with whole-number results.
Converting feet to inches: Multiply feet by 12
- 5 feet = 5 × 12 = 60 inches
- 7.5 feet = 7.5 × 12 = 90 inches
Converting inches to feet: Divide inches by 12
- 72 inches = 72 ÷ 12 = 6 feet
- 100 inches = 100 ÷ 12 = 8.33 feet = 8 feet, 4 inches
Mixed notation: 5'9" means 5 feet, 9 inches = (5 × 12) + 9 = 69 inches total.
How many feet are in a yard?
There are exactly 3 feet in 1 yard. This relationship dates back to medieval English measurements, where the yard represented a stride or the distance from the nose to an outstretched thumb of King Henry I.
The yard serves as a larger unit convenient for measuring fabric, sports fields, and medium distances. In American football, progress is measured in yards (first down = 10 yards = 30 feet), but field dimensions are often specified in feet (field width = 160 feet = 53⅓ yards).
Converting yards to feet: Multiply yards by 3
- 10 yards = 10 × 3 = 30 feet
- 100 yards = 100 × 3 = 300 feet (length of football field)
Converting feet to yards: Divide feet by 3
- 90 feet = 90 ÷ 3 = 30 yards (baseball base paths)
- 18 feet = 18 ÷ 3 = 6 yards (first down in football)
How many feet are in a mile?
There are exactly 5,280 feet in 1 mile. This seemingly arbitrary number results from historical compromises between different English measurement systems.
Historical origin: The Roman mile (mille passus) measured 1,000 paces (about 5,000 feet). Medieval England used furlongs for agricultural land measurement (660 feet = 1 furlong). Queen Elizabeth I standardized the mile in 1593 as exactly 8 furlongs, making 1 mile = 8 × 660 = 5,280 feet.
Common conversions:
- 1 mile = 5,280 feet
- 0.5 mile = 2,640 feet
- 0.25 mile = 1,320 feet
- 1,000 feet = 0.189 miles (about 3 city blocks)
Why it matters: Aircraft measure runway length in feet (7,000-foot runway, 10,000-foot runway), while navigation uses nautical miles (6,076 feet) or statute miles (5,280 feet). Real estate describes proximity in feet for nearby amenities ("500 feet to park") and miles for distant locations ("3 miles to downtown").
What's the difference between feet and square feet?
Feet (linear feet) measure distance in one dimension—length along a line. Use feet for measuring height, room length, fence lines, rope, baseboards, or any one-dimensional measurement.
Square feet measure area in two dimensions—the surface of a two-dimensional space. Use square feet for flooring, walls, ceilings, land area, or any flat surface.
The relationship: Square feet = length (in feet) × width (in feet)
- A room 12 feet long × 15 feet wide = 180 square feet
- A wall 10 feet wide × 8 feet tall = 80 square feet
Why confusion happens: A room with 54 linear feet of baseboard (12+15+12+15) contains 180 square feet of floor area. These are different measurements of the same room—perimeter versus area.
Cost implications: Contractors price differently:
- Fencing: $15-40 per linear foot installed
- Flooring: $3-12 per square foot installed
- Painting: $2-6 per square foot
Always clarify whether a price quote is per linear foot or per square foot—the difference is substantial.
Why does aviation use feet for altitude worldwide?
Aviation universally uses feet for altitude measurement, even in countries that otherwise use metric exclusively, for safety and standardization. This system was established by the International Civil Aviation Organization (ICAO) in 1947.
Historical reason: When commercial aviation developed in the 1920s-1940s, British and American manufacturers dominated, and altimeters measured in feet. As aviation became international, standardizing on the existing system proved safer and cheaper than converting all aircraft instruments and training.
Safety benefits: Universal altitude standards prevent confusion during international flights. When a French pilot, Japanese air traffic controller, and American pilot all say "flight level three-five-zero," everyone knows it means 35,000 feet. No conversion errors, no miscommunication, no accidents from unit confusion.
Vertical separation: Aircraft flying opposite directions maintain 1,000-foot vertical separation (2,000 feet above 29,000'). This separation is calibrated into procedures, training, and equipment worldwide. Changing to meters would require recalibrating countless procedures and risking lives during the transition.
Exceptions: China and Russia use meters for some domestic operations below 29,500 feet, but convert to feet-based flight levels for international flights and at high altitudes. This hybrid system is gradually shifting toward full feet-based standards.
Practical result: Pilots must understand feet regardless of nationality. Pilot training worldwide includes feet-based altitude management, making it one of the few truly universal measurements.
How do I convert feet to meters accurately?
To convert feet to meters, multiply by 0.3048. This is the exact conversion factor established by the 1959 international agreement.
Formula: meters = feet × 0.3048
Examples:
- 1 foot = 1 × 0.3048 = 0.3048 meters
- 5 feet = 5 × 0.3048 = 1.524 meters
- 6 feet = 6 × 0.3048 = 1.8288 meters
- 10 feet = 10 × 0.3048 = 3.048 meters
- 100 feet = 100 × 0.3048 = 30.48 meters
Reverse conversion (meters to feet): Divide by 0.3048, or multiply by 3.28084
- 1 meter = 1 ÷ 0.3048 = 3.28084 feet
- 5 meters = 5 × 3.28084 = 16.404 feet
- 10 meters = 10 × 3.28084 = 32.808 feet
Quick mental approximation: For rough estimates, remember 1 meter ≈ 3.3 feet (or more precisely, 3.28 feet). This gives close results:
- 10 meters ≈ 33 feet (actual: 32.8 feet)
- 100 meters ≈ 330 feet (actual: 328 feet)
For professional work requiring precision (construction, engineering, manufacturing), always use the exact factor 0.3048 rather than approximations.
What does feet-inches notation mean?
The notation 5′-9″ (or 5'9") means 5 feet, 9 inches. The single prime ′ (or apostrophe ') represents feet, while the double prime ″ (or quote ") represents inches.
Reading the notation:
- 6′ = six feet = 72 inches
- 6″ = six inches = 0.5 feet
- 5′-9″ = five feet, nine inches = 69 inches total = 5.75 feet decimal
- 12′-6½″ = twelve feet, six and a half inches = 150.5 inches = 12.542 feet decimal
Why the dash? The dash or hyphen between feet and inches makes the notation clearer in blueprints and prevents confusion. Without it, 5'9" might be misread, though the prime symbols make the meaning clear.
Common uses:
- Human height: "She's 5'6" tall"
- Room dimensions: "12' × 15' bedroom"
- Construction drawings: Wall length shown as 24'-3½"
Converting to total inches: Multiply feet by 12, then add inches:
- 5'9" = (5 × 12) + 9 = 60 + 9 = 69 inches
Converting from total inches: Divide by 12 for feet, use remainder for inches:
- 75 inches = 75 ÷ 12 = 6 remainder 3 = 6'3"
Why is the foot still used instead of meters?
The United States continues using feet instead of meters primarily due to infrastructure investment, industry standardization, and cultural identity—not because feet offer any technical advantage.
Infrastructure costs: Converting to metric would require replacing billions of feet-based measurements throughout American infrastructure:
- 4 million miles of road signs showing feet/miles
- Building codes and standards written in feet
- Millions of blueprints, survey records, and property deeds
- Construction materials sized in feet (8' studs, 4'×8' sheets)
- Manufacturing equipment calibrated in decimal feet (thousandths of an inch)
Estimated conversion cost: $370 billion to $1 trillion.
Industry standardization: American construction, real estate, aviation, and manufacturing operate entirely in feet. Changing would require:
- Retraining millions of workers
- Replacing tools, measuring devices, and equipment
- Converting countless technical documents
- Updating software systems and databases
Cultural familiarity: Americans instinctively understand feet—"six feet tall," "ten feet away," "twenty feet deep." These measurements connect to body scale and everyday experience. Most Americans don't have intuitive feel for meters, making conversion feel arbitrary and confusing.
Partial adoption: The US actually uses metric in science, medicine, military, and some industries. Soft drinks come in liters, track races use meters, pharmaceuticals dose in milligrams. Americans live in a hybrid system.
Failed conversions: The 1975 Metric Conversion Act made metric "preferred" but voluntary. Without enforcement, most industries continued with feet. Public backlash against metric road signs in the 1980s ended highway conversion attempts.
International exceptions: Aviation worldwide uses feet for altitude. Maritime navigation uses nautical miles and fathoms. Even metric countries maintain some imperial measurements in specific contexts, showing that pure metric conversion isn't always practical or necessary.
How much is an acre in feet?
One acre equals 43,560 square feet. This measurement originates from medieval English land measurement, where an acre represented the amount of land a yoke of oxen could plow in one day.
Common acre configurations:
- 1 acre = 43,560 square feet
- 1 acre ≈ 208.7 feet × 208.7 feet (if square)
- 1 acre = 660 feet × 66 feet (one furlong × one chain, historical farming measurement)
Practical examples:
- 0.25 acre = 10,890 sq ft ≈ 104.4' × 104.4' (quarter-acre suburban lot)
- 0.5 acre = 21,780 sq ft ≈ 147.6' × 147.6'
- 2 acres = 87,120 sq ft ≈ 295.2' × 295.2'
- 5 acres = 217,800 sq ft ≈ 466.7' × 466.7'
Football field comparison: An American football field including end zones measures 360 feet × 160 feet = 57,600 square feet = 1.32 acres. Without end zones, the playing field (300' × 160') is 48,000 sq ft = 1.1 acres.
Why it matters: Real estate describes land in acres but building sites in square feet or lot dimensions in feet. A half-acre lot might be 150' × 145', or 100' × 218'—multiple configurations yield the same area. Knowing the conversion helps visualize land size when shopping for property.
Zoning impact: Minimum lot sizes appear in ordinances as both acres and square feet: "0.5 acre minimum" = "21,780 square feet minimum." Subdivisions calculate density in units per acre: 4 houses per acre, 12 apartments per acre.
What's the origin of "six feet under"?
The phrase "six feet under" meaning burial or death originates from traditional grave depth—coffins were buried approximately six feet below ground surface.
Historical practice: The six-foot depth became standard in England during the 1665 Great Plague of London. Officials ordered plague victims buried "at least six foot deep" to prevent disease spread and discourage grave robbers. This depth kept odors contained and protected bodies from scavengers.
Modern burial depth: Contemporary cemeteries typically bury caskets 4-6 feet deep, though some jurisdictions specify different depths. The "six feet" measurement became culturally embedded as the standard, even when actual practice varies.
Measurement significance: Six feet provides enough earth to protect the coffin from surface disturbance (weather, animals, agriculture) while remaining practical to dig manually. Deeper burials exponentially increase labor, while shallower burials risk exposure.
Cultural persistence: The phrase "six feet under" persists in English as a euphemism for death, demonstrating how foot-based measurements embedded themselves in language and culture beyond mere physical measurement.
About Nautical Mile (NM)
1. Why is a nautical mile different from a statute mile?
The nautical mile is based on Earth's geometry (1 minute of latitude arc = 1,852 meters), making it naturally suited for navigation using coordinates. The statute mile (1,609.344 meters) derives from ancient Roman measurements (1,000 paces) and medieval English units, with no relationship to Earth's dimensions. This geometric basis gives nautical miles a critical advantage: distance traveled in degrees/minutes of latitude directly equals nautical miles, eliminating conversion factors when plotting courses or calculating distances on charts. For example, sailing from 40°N to 41°N = exactly 60 NM, but converting to statute miles (69 mi) or kilometers (111 km) requires calculation. Since maritime and aviation navigation fundamentally relies on lat/lon coordinates, the nautical mile's direct correspondence makes it indispensable.
2. How many feet are in a nautical mile?
One nautical mile equals exactly 1,852 meters, which converts to approximately 6,076.115 feet (sometimes rounded to 6,076 ft). This is about 796 feet longer than a statute mile (5,280 feet), or roughly 15% longer. The feet-based measurement is derived from the official meter-based definition. In practical maritime and aviation contexts, the meter or kilometer equivalent is more commonly referenced internationally, though English-speaking mariners may use feet for depth soundings and altitude. Interestingly, the old British Admiralty mile was defined as exactly 6,080 feet before international standardization in 1929.
3. What is a knot in relation to a nautical mile?
A knot is a unit of speed equal to one nautical mile per hour (NM/h). The name comes from 17th-18th century ship speed measurement using a chip log—a wooden board on a rope with knots tied at regular intervals (~47.3 feet / 14.4 m apart). Sailors threw the log overboard and counted how many knots passed through their hands in 28 seconds (measured by sandglass). This count approximated the ship's speed in "knots." Modern usage: Knots are the universal speed unit in maritime and aviation contexts worldwide. Never say "knots per hour"—that's redundant (like saying "miles per hour per hour"). Correct: "The ship travels at 20 knots" (not "20 knots per hour"). Conversions: 1 knot = 1.852 km/h = 1.15078 mph = 0.51444 m/s.
4. Why do airplanes use nautical miles if they fly over land?
Aircraft use nautical miles for several reasons: 1) Navigation consistency - Pilots navigate using lat/lon coordinates (VOR stations, waypoints, airways), making nautical miles natural for distance calculations; 2) International standardization - ICAO (International Civil Aviation Organization) mandates nautical miles globally so pilots and controllers communicate in consistent units; 3) Integration with maritime - Coastal navigation, search and rescue, and naval aviation require coordination between sea and air assets; 4) Charts and instruments - Aviation charts (Sectional Charts, IFR En Route Charts) use nautical miles for scale; airborne radar, GPS displays show distances in NM; 5) Historical continuity - Early aviation borrowed navigation techniques from maritime practice, including units. Even flying from New York to Chicago (entirely over land), pilots file flight plans in nautical miles and track progress using NM-based waypoints.
5. Do ships and planes actually navigate by measuring minutes of latitude anymore?
While GPS has revolutionized navigation, making manual celestial navigation rare, the fundamental relationship between nautical miles and latitude remains essential: 1) GPS coordinates are still expressed in degrees/minutes/seconds—the same system nautical miles were designed for; 2) Electronic charts (ECDIS, aviation GPS) display positions in lat/lon and distances in NM, leveraging the 1-minute-of-latitude = 1-NM relationship; 3) Flight planning and voyage planning software calculates great circle routes using coordinates, then converts distances to NM automatically using the geometric relationship; 4) Regulatory requirements - Maritime and aviation regulations mandate backup navigation systems; ships must carry paper charts and be able to navigate traditionally; 5) Emergency situations - If electronics fail, mariners revert to celestial navigation and dead reckoning, where the NM-latitude relationship is invaluable. So yes, the underlying principle still matters daily.
6. What's the difference between a nautical mile and a geographic mile?
These terms are sometimes used interchangeably, but historically: A geographic mile was an older term for a distance equal to one minute of arc along Earth's equator, which varies slightly depending on the Earth model used (perfectly spherical vs. oblate spheroid). A nautical mile (modern standard: 1,852 m) represents one minute of arc of latitude along a meridian, averaged over Earth's entire surface. Because Earth is an oblate spheroid (slightly flattened at poles), one minute of latitude varies from 1,842.9 m at the equator to 1,861.7 m at the poles; 1,852 m is approximately the average. In modern usage, "geographic mile" is obsolete; everyone uses "nautical mile" (1,852 m exactly). Some historical texts or older navigators may reference "geographic mile," but it's effectively synonymous with nautical mile today.
7. Why don't countries using the metric system switch to kilometers for navigation?
Despite most countries adopting the metric system for land measurements, the nautical mile persists for several reasons: 1) Geometric advantage - The direct relationship to latitude (1 minute = 1 NM) is uniquely valuable for navigation, whereas kilometers have no such relationship; 2) International standardization - Maritime and aviation are inherently international; adopting a consistent unit globally (nautical mile) prevents confusion; 3) Massive infrastructure - All nautical charts, aviation charts, navigation instruments, regulations, training materials, and procedures worldwide use NM/knots. Converting would cost billions and risk safety during transition; 4) No compelling benefit - Switching to kilometers would eliminate the lat/lon correspondence without providing offsetting advantages; 5) Legal frameworks - Territorial waters (12 NM), EEZs (200 NM), international straits, flight information regions (FIRs) are all defined in nautical miles in treaties. Even the European Union, which strongly promotes metrication, uses nautical miles and knots in maritime and aviation contexts.
8. How does the nautical mile work at the poles where longitude lines converge?
The nautical mile is defined by latitude, not longitude, so it works identically everywhere from equator to poles. One minute of latitude arc along a meridian = 1 nautical mile, whether you're at 0°N (equator) or 89°N (near North Pole). Longitude is different: Longitude lines (meridians) converge at the poles. At the equator, 1 minute of longitude = 1 NM. At higher latitudes, 1 minute of longitude = 1 NM × cos(latitude). At 60°N/S, 1 minute of longitude = 0.5 NM. At 89°N/S, 1 minute of longitude ≈ 0.017 NM. At the poles themselves, longitude becomes undefined (all meridians meet). Practical implication: When navigating in polar regions, distances calculated from longitude differences require correction using cos(latitude), but distances from latitude differences remain straightforward (1 minute = 1 NM). Polar navigation also involves other challenges (magnetic compass unreliability near poles, ice, extreme weather), but the nautical mile's relationship to latitude remains consistent.
9. What's a "cable" in naval terminology, and how does it relate to nautical miles?
A cable (or cable length) is an informal unit used in naval and maritime contexts, traditionally defined as one-tenth of a nautical mile (approximately 185.2 meters or 607.6 feet). Example: "The destroyer is 5 cables astern" means 0.5 nautical miles behind. The term derives from historical ship operations where anchor cable lengths were a practical short-distance measure. In different navies, "cable" had slight variations: The British Admiralty defined 1 cable = 608 feet (1/10 of Admiralty mile of 6,080 ft). The U.S. Navy traditionally used 120 fathoms = 720 feet as 1 cable (different from 0.1 NM). Modern international standard: 1 cable = 0.1 nautical mile = 185.2 meters. The unit is mostly informal today, used in shiphandling, navigation reports, and naval communications for distances under 1 NM. You won't find "cables" on official charts or in regulations, but mariners understand it conversationally.
10. Can GPS calculate distances directly in nautical miles, or does it convert from meters?
GPS satellites transmit positions in terms of the WGS84 (World Geodetic System 1984) coordinate system, which defines Earth's shape and uses latitude/longitude coordinates. GPS receivers calculate distances using geodesic calculations on the WGS84 ellipsoid (accounting for Earth's actual shape—oblate spheroid). These distances are initially in meters (the SI base unit). However, marine and aviation GPS receivers are programmed to display distances in nautical miles by converting: meters ÷ 1,852 = nautical miles. This conversion is trivial computationally. The result: When your chartplotter or aviation GPS shows "125 NM to waypoint," it calculated the geodesic distance in meters, then divided by 1,852. The convenience is that GPS inherently works with lat/lon coordinates, which naturally align with nautical mile navigation concepts (1 minute of latitude ≈ 1 NM). So GPS doesn't "natively" calculate in NM, but the conversion is seamless and standard in maritime/aviation equipment.
11. Why is the international nautical mile exactly 1,852 meters and not a rounder number?
The 1,852-meter definition was chosen in 1929 because it represents the average length of one minute of latitude over Earth's entire surface, based on geodetic measurements available at the time. Earth is an oblate spheroid (equatorial radius ~6,378 km, polar radius ~6,357 km), so one minute of latitude varies: ~1,842.9 m at equator, ~1,861.7 m at poles. The average is approximately 1,852 meters. Why not round to 1,850 m or 1,900 m? 1) Minimizing disruption - 1,852 m was already the French nautical mile; adopting it avoided requiring France to change; 2) Close to existing standards - British Admiralty mile (6,080 ft = 1,853.18 m) and U.S. mile (6,080.20 ft = 1,853.24 m) were very close, easing transition; 3) Geographic accuracy - 1,852 m truly represents Earth's average, making navigation calculations accurate globally. Rounding to 1,800 or 2,000 m would have introduced errors and forced major maritime powers to adopt a number disconnected from their established practices.
12. What will happen to the nautical mile as navigation technology continues to evolve?
The nautical mile is likely to persist indefinitely despite technological advances: 1) Embedded in infrastructure - All maritime and aviation charts, instruments, regulations, training, and international treaties use nautical miles. Switching would require coordinated global change costing billions; 2) Geometric relevance endures - Even with GPS, positions are expressed in lat/lon coordinates. The 1-minute-of-latitude = 1-NM relationship remains useful for quick mental calculations and chart work; 3) International standardization success - The nautical mile is a rare example of a universally adopted standard (unlike metric vs. imperial debates). No country or organization is pushing to replace it; 4) Safety and conservatism - Aviation and maritime sectors are extremely conservative about changes affecting safety. Introducing a new unit (even kilometers) would risk miscommunication and accidents during transition; 5) Legal entrenchment - Treaties defining territorial waters (12 NM), EEZs (200 NM), and airspace boundaries would require renegotiation. Precedent: Despite metrication trends since the 1970s, the nautical mile has not only survived but strengthened its global position. Prediction: Nautical miles and knots will remain the standard for maritime and aviation navigation for the foreseeable future (next 50-100+ years).
Conversion Table: Foot to Nautical Mile
| Foot (ft) | Nautical Mile (NM) |
|---|---|
| 0.5 | 0 |
| 1 | 0 |
| 1.5 | 0 |
| 2 | 0 |
| 5 | 0.001 |
| 10 | 0.002 |
| 25 | 0.004 |
| 50 | 0.008 |
| 100 | 0.017 |
| 250 | 0.041 |
| 500 | 0.082 |
| 1,000 | 0.165 |
People Also Ask
How do I convert Foot to Nautical Mile?
To convert Foot to Nautical Mile, enter the value in Foot in the calculator above. The conversion will happen automatically. Use our free online converter for instant and accurate results. You can also visit our length converter page to convert between other units in this category.
Learn more →What is the conversion factor from Foot to Nautical Mile?
The conversion factor depends on the specific relationship between Foot and Nautical Mile. You can find the exact conversion formula and factor on this page. Our calculator handles all calculations automatically. See the conversion table above for common values.
Can I convert Nautical Mile back to Foot?
Yes! You can easily convert Nautical Mile back to Foot by using the swap button (⇌) in the calculator above, or by visiting our Nautical Mile to Foot converter page. You can also explore other length conversions on our category page.
Learn more →What are common uses for Foot and Nautical Mile?
Foot and Nautical Mile are both standard units used in length measurements. They are commonly used in various applications including engineering, construction, cooking, and scientific research. Browse our length converter for more conversion options.
For more length conversion questions, visit our FAQ page or explore our conversion guides.
Helpful Conversion Guides
Learn more about unit conversion with our comprehensive guides:
📚 How to Convert Units
Step-by-step guide to unit conversion with practical examples.
🔢 Conversion Formulas
Essential formulas for length and other conversions.
⚖️ Metric vs Imperial
Understand the differences between measurement systems.
⚠️ Common Mistakes
Learn about frequent errors and how to avoid them.
All Length Conversions
Other Length Units and Conversions
Explore other length units and their conversion options:
- Meter (m) • Foot to Meter
- Kilometer (km) • Foot to Kilometer
- Hectometer (hm) • Foot to Hectometer
- Decimeter (dm) • Foot to Decimeter
- Centimeter (cm) • Foot to Centimeter
- Millimeter (mm) • Foot to Millimeter
- Inch (in) • Foot to Inch
- Yard (yd) • Foot to Yard
- Mile (mi) • Foot to Mile
- Micrometer (μm) • Foot to Micrometer
Verified Against Authority Standards
All conversion formulas have been verified against international standards and authoritative sources to ensure maximum accuracy and reliability.
National Institute of Standards and Technology — Official US standards for length measurements
Bureau International des Poids et Mesures — International System of Units official documentation
Last verified: December 3, 2025