Kilometer to Mil/Thou Converter

Convert kilometers to mils with our free online length converter.

Quick Answer

1 Kilometer = 39370078.740157 mils

Formula: Kilometer × conversion factor = Mil/Thou

Use the calculator below for instant, accurate conversions.

Our Accuracy Guarantee

All conversion formulas on UnitsConverter.io have been verified against NIST (National Institute of Standards and Technology) guidelines and international SI standards. Our calculations are accurate to 10 decimal places for standard conversions and use arbitrary precision arithmetic for astronomical units.

Last verified: December 2025Reviewed by: Sam Mathew, Software Engineer

Kilometer to Mil/Thou Calculator

How to Use the Kilometer to Mil/Thou Calculator:

  1. Enter the value you want to convert in the 'From' field (Kilometer).
  2. The converted value in Mil/Thou will appear automatically in the 'To' field.
  3. Use the dropdown menus to select different units within the Length category.
  4. Click the swap button (⇌) to reverse the conversion direction.
Share:

How to Convert Kilometer to Mil/Thou: Step-by-Step Guide

Converting Kilometer to Mil/Thou involves multiplying the value by a specific conversion factor, as shown in the formula below.

Formula:

1 Kilometer = 3.9370e+7 mils

Example Calculation:

Convert 10 kilometers: 10 × 3.9370e+7 = 3.9370e+8 mils

Disclaimer: For Reference Only

These conversion results are provided for informational purposes only. While we strive for accuracy, we make no guarantees regarding the precision of these results, especially for conversions involving extremely large or small numbers which may be subject to the inherent limitations of standard computer floating-point arithmetic.

Not for professional use. Results should be verified before use in any critical application. View our Terms of Service for more information.

What is a Kilometer and a Mil/Thou?

The kilometer is a unit of length in the International System of Units (SI), the modern form of the metric system. One kilometer equals exactly 1,000 meters by definition, making it a straightforward decimal multiple of the base SI length unit.

The kilometer is denoted by the symbol km (lowercase 'k', lowercase 'm'). The spelling varies by region: "kilometre" in British English and Commonwealth countries, "kilometer" in American English, though both refer to the same measurement.

The kilometer represents the standard distance unit for:

  • Road distances and highway signage worldwide (except USA, Myanmar, Liberia)
  • Geographic features: city separation, coastline length, river length
  • Transportation: vehicle range, fuel efficiency (km/L or L/100km)
  • Athletics: running and cycling race distances (5K, 10K, marathon)
  • Aviation: visibility distances, some altitude references in certain countries

The metric system's decimal structure makes kilometer conversions simple:

  • 1 kilometer = 1,000 meters (exactly)
  • 1 kilometer = 100,000 centimeters
  • 1 kilometer = 1,000,000 millimeters
  • 1 meter = 0.001 kilometers
  • 1 centimeter = 0.00001 kilometers

What is a Mil?

A mil (also called thou) is a unit of length in the imperial measurement system equal to one thousandth of an inch. The mathematical definition is:

1 mil = 0.001 inch = 1/1000 inch = 25.4 micrometers (μm) = 0.0254 millimeters

The mil is not a metric unit and should not be confused with the millimeter (mm), despite similar-sounding names. This confusion is one of the most common measurement errors in international manufacturing:

  • 1 mil (imperial) = 0.0254 mm = 25.4 μm
  • 1 millimeter (metric) = 39.37 mils = 1,000 μm

The mil exists as a natural subdivision of the inch, providing a convenient decimal-based measurement for very small imperial dimensions without resorting to awkward fractions like 1/1000″.

Mil vs. Thou: Regional Terminology

The terms "mil" and "thou" are completely interchangeable and refer to the exact same measurement:

  • Mil: Predominant in American English, technical documentation, industry standards (ASTM, ANSI), and scientific contexts. The name derives from Latin "mille" (thousand).
  • Thou: Common in British English shop-floor terminology, machining, and colloquial engineering speech. It's an abbreviated form of "thousandth" (of an inch).

Example usage:

  • American engineer: "The coating should be 5 mils thick."
  • British machinist: "Machine this to within 2 thou tolerance."
  • Both mean the same thing: 0.005″ and 0.002″ respectively.

Decimal Imperial vs. Fractional Imperial

The mil represents a decimal approach to imperial measurement, contrasting with the traditional fractional approach:

Fractional imperial (traditional):

  • 1/2″, 1/4″, 1/8″, 1/16″, 1/32″, 1/64″
  • Awkward for very small measurements
  • Difficult to add/subtract without common denominators

Decimal imperial (mils/thousandths):

  • 0.500″ (500 mils), 0.250″ (250 mils), 0.125″ (125 mils)
  • Easy arithmetic: 5 mils + 3 mils = 8 mils
  • Natural compatibility with digital calipers and micrometers

Engineering drawings often show both: 0.250″ (1/4″) for clarity, but critical tolerances are always specified in decimal thousandths: ±0.005″ (±5 mils), never ±1/200″.

Mils in Wire Gauge Systems

American Wire Gauge (AWG) uses diameter in mils as the basis for its numbering system, though the relationship is logarithmic rather than linear:

| AWG Size | Diameter (mils) | Diameter (mm) | Common Use | |----------|----------------|---------------|------------| | 0000 (4/0) | 460 mil | 11.7 mm | Heavy power cables | | 00 (2/0) | 365 mil | 9.3 mm | Welding cable | | 10 AWG | 102 mil | 2.6 mm | Household 30A circuits | | 14 AWG | 64 mil | 1.6 mm | Household 15A circuits | | 18 AWG | 40 mil | 1.0 mm | Lamp cords, doorbells | | 22 AWG | 25 mil | 0.64 mm | Solid hookup wire | | 30 AWG | 10 mil | 0.25 mm | Wire-wrap wire | | 40 AWG | 3 mil | 0.08 mm | Magnet wire (coils) |

The AWG system was established in the 1850s based on the number of times wire was drawn through reducing dies, with each gauge step representing approximately a 20% reduction in diameter (factor of √2 for cross-sectional area).

Note: The Kilometer is part of the metric (SI) system, primarily used globally in science and trade. The Mil/Thou belongs to the imperial/US customary system.

History of the Kilometer and Mil/Thou

The kilometer emerged during one of history's most ambitious standardization efforts—the creation of the metric system during the French Revolution.

Metric System Origins (1790s): In 1791, the French Academy of Sciences proposed a universal measurement system based on natural constants rather than arbitrary royal decrees. They defined the meter as one ten-millionth of the distance from the North Pole to the equator along the Paris meridian. For longer distances, they created the kilometer (from Greek khilioi = thousand, plus metron = measure).

Decimal Simplicity: Unlike traditional systems with complex conversions (5,280 feet per mile, 1,760 yards per mile), the metric system used consistent decimal relationships. This made the kilometer instantly comprehensible: 1 km = 1,000 m, with no fractional arithmetic required.

Global Adoption: The metric system spread rapidly throughout Europe in the early 1800s. Napoleon's conquests carried metric measurements across the continent. By the mid-19th century, most European nations had officially adopted kilometers for distance measurement.

International Treaty (1875): The Metre Convention, signed by 17 nations, established the International Bureau of Weights and Measures (BIPM) and made the metric system the international scientific standard. Kilometers became the globally recognized unit for geographic and travel distances.

Road Sign Conversion: Through the 20th century, country after country converted road signage from miles to kilometers:

  • Germany: 1920s (early adopter)
  • Japan: 1924
  • France: Kilometers used since metric system creation (1795)
  • Australia: 1974 (major conversion effort)
  • Canada: 1977 (gradual conversion)
  • United Kingdom: Still uses miles despite metric adoption elsewhere
  • Ireland: 2005 (one of the last European conversions)

Modern Definition (1983): The meter was redefined based on the speed of light: the distance light travels in vacuum during 1/299,792,458 of a second. This made the kilometer precisely 299,792,458/299,792,458,000 of the distance light travels in one second, tying it to a fundamental physical constant rather than a physical artifact.

Global Standard: Today, approximately 195 of 198 countries use kilometers as their primary road distance measurement. Only the United States, Myanmar, and Liberia officially use miles, though Myanmar is gradually transitioning to metric. The kilometer has become effectively universal for international travel, trade, and communication.

Ancient and Medieval Precision (Before 1700)

Before the Industrial Revolution, precision measurement was limited by available tools. Ancient civilizations measured small lengths using:

  • Barleycorns: 1 inch = 3 barleycorns (still referenced in shoe sizing)
  • Hair breadth: Approximately 1/48 of an inch (about 21 mils)
  • Poppy seed: Medieval unit ≈ 1/72 inch (14 mils)

These natural standards were inconsistent but adequate for carpentry, masonry, and traditional crafts where tolerances of 1/16″ to 1/32″ were acceptable. Precision metalworking (locksmithing, clockmaking, weapon-smithing) relied on master craftsmen's skill and direct comparison to reference standards rather than numerical measurement.

The finest medieval measurements were in clock and instrument making, where tolerances approaching 1/100″ (10 mils) were occasionally achieved, but not reliably measured or documented.

Industrial Revolution and the Birth of Precision (1750-1850)

The transformation of manufacturing from craft to industry created an urgent need for precision measurement:

1775-1800: John Wilkinson's cylinder boring machine (1775) achieved tolerances within 1/20″ (50 mils) for steam engine cylinders—revolutionary at the time, enabling James Watt's efficient steam engines.

1800-1840: Interchangeable parts manufacturing emerged. Eli Whitney's 1798 contract to produce 10,000 muskets with interchangeable parts required consistent tolerances around 1/32″ (31 mils), though he struggled to achieve this consistently.

1840s: Joseph Whitworth revolutionized precision measurement:

  • Invented the first practical micrometer (1840s), capable of measuring to 0.001″ (1 mil)
  • Developed precision surface plates and scrapers
  • Standardized screw threads with tolerances of a few thousandths
  • Established the "thou" as the standard British precision unit

Whitworth's work meant that for the first time, machinists could reliably measure and verify work to within one thousandth of an inch, making the mil/thou a practical working unit rather than a theoretical ideal.

1850s: American System of Manufacturing (Colt, Robbins & Lawrence, Singer) adopted decimal measurements in thousandths for gauging and inspection, establishing "mils" in American technical vocabulary.

Standardization and Proliferation (1850-1920)

1860s-1880s: Development of precision measuring instruments:

  • Vernier calipers graduated in thousandths
  • Micrometer calipers (marketed by Brown & Sharpe from 1867)
  • Dial indicators (from 1890s) showing 0.001″ divisions

1857: American Wire Gauge (AWG) standardized by J. R. Brown, using wire diameter in mils as the basis.

1880s-1900s: Paint and coating industries adopted mils for dry film thickness:

  • Paint manufacturers specified coverage rates based on mils of dry film
  • Wet film thickness gauges calibrated in mils
  • Quality standards (e.g., U.S. Navy specifications) required minimum coating thickness in mils

1900-1920: Sheet metal gauges proliferated (ironically, these use arbitrary numbering systems, but actual thickness is specified in decimal inches/mils):

  • Manufacturer's Standard Gauge (MSG) for steel
  • Birmingham Wire Gauge (BWG)
  • Confusion from multiple gauge systems led to increasing use of direct mil specifications

1916: SAE (Society of Automotive Engineers) founded, establishing thousands of specifications with tolerances in thousandths of an inch for automotive parts.

Electronics Age and Micro-Precision (1920-1980)

1930s-1940s: Electronics manufacturing adopted mils for:

  • Wire insulation thickness (enamel on magnet wire: 0.5-2 mils)
  • Capacitor dielectric thickness
  • Vacuum tube electrode spacing

1943: Printed Circuit Board (PCB) invention (Paul Eisler, 1943; mass production 1950s):

  • Copper foil thickness: 1.4 mils (1 oz/ft²), 2.8 mils (2 oz/ft²)
  • Trace width: typically 5-15 mils for signal traces
  • Spacing between traces: 5-8 mils minimum in early designs
  • PCB substrate thickness: 62 mils (1.57 mm) became standard

1950s-1960s: Plastic film industry standardized thickness in mils:

  • Polyethylene film (bags, wrap): 0.5-6 mils
  • Polyester film (Mylar): 0.5-10 mils
  • Vinyl flooring underlayment: 6-20 mils

1960s: Integrated circuit (IC) manufacturing pushed precision far beyond mils:

  • Early transistors: features measured in tens of mils
  • By 1970: features approaching 100 microinches (0.1 mil)
  • The mil remained relevant for IC package dimensions, lead spacing, and encapsulation thickness

1975: ANSI/ASTM standards codified mil-based specifications for coating thickness, plastic film, and adhesive tape across dozens of industries.

Modern Era and Metrication Resistance (1980-Present)

1980s-1990s: Global metrication movement:

  • Britain officially metricated in 1965-1995, but "thou" persisted in machine shops
  • U.S. industries largely resisted metrication in favor of established decimal-inch (mil) systems
  • Aerospace, defense, and automotive industries retained imperial specs due to:
    • Enormous legacy of existing designs, tooling, and parts libraries
    • Cost of converting decades of technical documentation
    • Risk of conversion errors (Mars Climate Orbiter lost in 1999 due to metric/imperial confusion)

1990s-2000s: PCB design and microelectronics:

  • PCB CAD software (OrCAD, Altium, Eagle) defaulted to mil grid spacing (5 mil, 10 mil, 25 mil grids)
  • Modern PCB fabrication: 3-4 mil traces/spaces achievable in standard processes
  • Advanced processes: sub-mil features (0.5 mil), but package and board dimensions still in mils

2000s-Present: Hybrid metric/imperial usage:

  • American manufacturing: Part dimensions often in inches/mils, tolerances in mils
  • International suppliers: Provide both metric and mil equivalents
  • 3D printing: Software often accepts both (mil settings for layer height, nozzle diameter)
  • Coating industry: Paint thickness gauges typically show both mils and microns

Present day: The mil remains dominant in:

  • American PCB and electronics manufacturing
  • U.S. aerospace and defense (military specifications)
  • Coating and painting (ASTM standards)
  • Plastic film and flexible packaging
  • American Wire Gauge system
  • Machining tolerances in U.S. shops

Common Uses and Applications: kilometers vs mils

Explore the typical applications for both Kilometer (metric) and Mil/Thou (imperial/US) to understand their common contexts.

Common Uses for kilometers

International Road Travel and GPS

GPS navigation systems worldwide default to kilometers in metric countries. Drivers receive instructions like "In 2 kilometers, turn left" or "Your destination is 45 kilometers away." Trip computers display "distance to empty" in kilometers, helping drivers plan fuel stops.

Road atlases and mapping applications show distance scales in kilometers. Drivers estimate travel time using kilometers: "It's 300 km, so at 100 km/h average, that's 3 hours of driving" becomes intuitive mental math.

Highway interchanges number by kilometer markers in many countries. "Exit 245" means the exit is 245 km from the highway's starting point, making distance calculation simple: the gap between Exit 245 and Exit 310 is 65 km.

Public Transportation and Urban Transit

Metro, train, and bus systems describe route lengths and network extent in kilometers:

Urban Rail Systems:

  • Tokyo Metro: 304 km of track, 179 stations
  • London Underground: 402 km of track
  • New York City Subway: 380 km of track
  • Paris Métro: 226 km of track

High-Speed Rail:

  • China high-speed network: 40,000+ km (world's largest)
  • Europe high-speed: 11,000+ km network
  • Japan Shinkansen: 3,000+ km
  • Trains operate at 250-350 km/h

Commuters describe their journey: "I take the train 35 km to work" or "The metro line is 25 km end to end."

Logistics and Freight

Shipping companies calculate costs, routes, and delivery times in kilometers:

Trucking:

  • Per-kilometer rates: €0.50-2.00 per km depending on cargo
  • Driver limits: 500-900 km daily maximum (varying by regulations)
  • Route optimization: Software minimizes total kilometers driven

Delivery Services:

  • Local delivery: 0-50 km radius
  • Regional delivery: 50-200 km
  • National delivery: 200-1,000+ km

Supply Chain: "Warehouse is 150 km from port" or "Distribution center serves 200 km radius" inform logistics planning and inventory positioning.

Scientific and Environmental Research

Scientific studies report distances in kilometers:

Climate Science:

  • Ice shelf extent: "Antarctic ice shelf extends 500 km from coast"
  • Glacier retreat: "Glacier receded 5 km over past decade"
  • Ocean currents: "Gulf Stream flows 10,000 km across Atlantic"

Geology:

  • Fault lines: "San Andreas Fault extends 1,200 km through California"
  • Volcanic reach: "Ash cloud spread 500 km from eruption"

Ecology:

  • Animal migration: "Caribou migrate 5,000 km annually"
  • Bird migration: "Arctic terns migrate 70,000 km round trip"

Sports and Recreation

Beyond running, many sports use kilometer measurements:

Hiking:

  • Day hike: 5-20 km round trip
  • Multi-day trek: 10-30 km per day
  • Long-distance trails: Appalachian Trail 3,500 km, Pacific Crest Trail 4,300 km

Swimming:

  • Open water races: 5 km, 10 km, 25 km
  • English Channel: 34 km minimum straight-line distance (actual swim 40-50 km due to currents)

Skiing:

  • Cross-country ski race: 10 km, 30 km, 50 km distances
  • Ski resort terrain: "Resort has 150 km of marked runs"

Sailing:

  • Yacht races: Sydney to Hobart 1,170 km, Volvo Ocean Race circumnavigates 72,000+ km

Agriculture and Land Management

Farms and land parcels measure in hectares, with distances in kilometers:

Farm Infrastructure:

  • Irrigation canal: 10-50 km length serving agricultural region
  • Fence line: "Property has 15 km of fencing"
  • Farm roads: "30 km of internal roads"

Rural Distances:

  • "Town is 25 km away"
  • "Nearest hospital 60 km"
  • "Property borders 2 km of river frontage"

Real Estate and Property

Property descriptions include kilometer proximity to amenities:

Location Descriptions:

  • "5 km to city center"
  • "2 km to nearest school"
  • "15 km to international airport"
  • "Within 1 km of public transport"

Commute Distance: Property values often correlate with kilometer distance from employment centers. "Within 10 km of downtown" commands premium pricing compared to "40 km from city center."

Emergency Services

Police, fire, and ambulance services track response distances and coverage areas in kilometers:

Response Zones:

  • Ambulance coverage: Aim for < 8 km from any location
  • Fire station spacing: 3-5 km apart in urban areas
  • Police patrol areas: Officers cover 10-30 km² sectors

Response Times: "Average response time 8 minutes for locations within 5 km of station" guides emergency service planning.

Telecommunications and Utilities

Infrastructure planners measure network reach and service areas in kilometers:

Power Distribution:

  • High-voltage transmission: Hundreds to thousands of km
  • Distribution lines: 5-20 km from substation to customers
  • Rural electrification: "Extended power 50 km to remote village"

Water Supply:

  • Aqueduct: "200 km pipeline from reservoir to city"
  • Distribution network: "City has 2,000 km of water mains"

Internet Infrastructure:

  • "Fiber backbone runs 5,000 km across country"
  • "Last-mile connections within 3 km of exchange"

When to Use mils

1. Precision Manufacturing and Machining

The mil is the fundamental tolerance unit in American manufacturing:

Engineering drawings and blueprints:

  • Nominal dimensions in decimal inches: 1.250″, 0.375″
  • Tolerances in thousandths: ±0.005″ (±5 mils), ±0.002″ (±2 mils)
  • Geometric dimensioning and tolerancing (GD&T): Position tolerance ⌖ 0.010″ (10 mils)

Quality control and inspection:

  • Calipers and micrometers graduated in 0.001″ (1 mil) divisions
  • Dial indicators show 0.001″ or 0.0001″ (0.1 mil) graduations
  • Coordinate measuring machines (CMM) measure to ±0.1 mil or better
  • Pass/fail gauges: "Go" and "No-Go" plugs/rings differ by a few mils

Real-world tolerances by industry:

  • General fabrication: ±5-10 mils (±0.005-0.010″)
  • Automotive production: ±2-5 mils typical
  • Aerospace critical parts: ±0.5-2 mils
  • Medical implants (hip, knee): ±0.2-1 mil
  • Semiconductor equipment: ±0.1 mil (±100 microinches)

Example: A shaft specified as Ø 1.000″ ± 0.002″ must measure between 0.998″ and 1.002″ (within ±2 mils). A shaft measuring 1.003″ (3 mils over) would be rejected.

2. Coating Thickness Measurement

Paint, plating, and protective coating thickness is universally measured in mils in American industry:

Paint inspection (wet film thickness gauges):

  • Notch gauges (comb-style): Teeth graduated in mils (2, 4, 6, 8, 10 mils)
  • Painter inserts gauge into wet paint; highest clean tooth indicates thickness
  • Ensures proper coverage to meet specification (e.g., "apply to 6 mils wet film")

Dry film thickness (DFT) measurement:

  • Magnetic gauges (ferrous substrates): Reed sensor or Hall effect, calibrated in mils
  • Eddy current gauges (non-ferrous): For aluminum, brass, copper substrates
  • Ultrasonic gauges: For non-metallic coatings on any substrate

Industry specifications:

  • SSPC-PA 2 (paint inspection): Requires DFT measurement in mils
  • U.S. Navy painting specs: Minimum DFT requirements (e.g., 5-7 mils for topcoat)
  • Automotive OEM specs: Total paint system 4-6 mils
  • Industrial maintenance coatings: Often 8-15 mils for severe environments

Example: A steel bridge specification might require: "Apply epoxy primer to 5-8 mils DFT, followed by polyurethane topcoat to 3-5 mils DFT." Inspectors measure at multiple points; any reading below minimum triggers rework.

Galvanizing and plating:

  • Hot-dip galvanizing: ASTM A123 requires minimum 2.0 mils (for <1/4″ thick steel)
  • Chrome plating: 0.5-1 mil decorative, 8-10 mils hard chrome (wear resistance)
  • Anodizing (aluminum): Type II = 0.2-0.7 mils, Type III (hard anodize) = 2-4 mils

3. Plastic Film and Flexible Packaging

Plastic film thickness is specified in mils in the U.S. packaging industry:

Food packaging films:

  • Shrink wrap: 2-4 mils (60-100 μm)
  • Stretch wrap (pallet wrap): 12-20 gauge = 0.5-0.8 mil (gauge ≠ mils, confusingly)
  • Vacuum seal bags (FoodSaver): 3-4 mils
  • Frozen food bags: 2-3 mils
  • Thicker film = better puncture resistance, higher material cost

Construction and industrial films:

  • Vapor barriers (under-slab): 6-10 mils required by building codes
  • Construction tarps: 5-12 mils depending on duty
  • Agricultural greenhouse film: 4-6 mils (UV-stabilized)
  • Geomembrane liners (landfills, ponds): 20-100 mils

Adhesive tapes:

  • Scotch tape (Transparent): 1-1.5 mils
  • Masking tape: 5-7 mils total thickness
  • Duct tape: 10-12 mils
  • Double-sided foam tape: 30-60 mils
  • Specification includes backing + adhesive thickness

Industry standards:

  • ASTM D6988: Standard specification for polyethylene film (thickness in mils)
  • ASTM D374: Method for measuring tape thickness (to 0.1 mil)

Example: A customer ordering "6-mil poly sheeting" for a concrete vapor barrier receives polyethylene film exactly 0.006″ (6 mils = 0.15 mm) thick, ensuring compliance with IRC building code.

4. Electronics and Printed Circuit Boards

PCB design and manufacturing is dominated by mil-based dimensions in the United States:

PCB design software (Altium, Eagle, KiCAD, OrCAD):

  • Default grid spacing: 50 mils, 25 mils, 10 mils, 5 mils, 1 mil
  • Component libraries use 100-mil pin spacing for through-hole parts
  • Trace width and clearance rules specified in mils

Design rules and capabilities:

  • Standard PCB fabrication (budget services):
    • Minimum trace width: 6 mils
    • Minimum spacing: 6 mils
    • Via drill: 8-10 mils
    • Copper weight: 1 oz (1.4 mils)
  • Advanced PCB fabrication:
    • Minimum trace/space: 3 mil / 3 mil
    • Microvias: 4-6 mil drill
    • HDI (high-density interconnect): sub-mil features

Copper thickness selection:

  • 1 oz copper (1.4 mils): Standard for signal layers, adequate for currents <3A
  • 2 oz copper (2.8 mils): Power planes, higher current capacity (5-10A per trace)
  • 3-4 oz copper (4.2-5.6 mils): Power electronics, automotive
  • Current-carrying capacity increases with thickness (more copper = less resistance = less heat)

PCB stackup (multilayer boards):

  • 4-layer board example:
    • Top copper: 1.4 mils (1 oz)
    • Prepreg: 7 mils
    • Inner layer 1 (ground): 1.4 mils
    • Core: 47 mils
    • Inner layer 2 (power): 1.4 mils
    • Prepreg: 7 mils
    • Bottom copper: 1.4 mils
    • Total: 67 mils (1.7 mm)

Soldermask and silkscreen:

  • Soldermask (green coating): 0.8-1.2 mils thickness
  • Silkscreen (white text): 0.5-1 mil
  • Surface finish (ENIG gold): 1-2 microinches (0.001-0.002 mil)

5. Wire Gauge and Cable Manufacturing

American Wire Gauge (AWG) is fundamentally based on diameter in mils:

AWG diameter formula:

  • Each gauge step represents approximately a 1.123× change in diameter (10 steps = 1 decade = 10× area change)
  • AWG 10 = 102 mils diameter
  • AWG 20 = 32 mils diameter
  • AWG 30 = 10 mils diameter

Wire insulation thickness (in mils over conductor diameter):

  • Thin-wall insulation: 4-8 mils
  • Standard insulation: 15-30 mils
  • High-voltage insulation: 30-60+ mils
  • Specification: "22 AWG with 10 mil insulation" = 25 mil conductor + 20 mil insulation total = 45 mil overall diameter

Magnet wire (enameled copper for motors, transformers):

  • AWG 28-40 common for small coils
  • Enamel coating: 0.5-2 mils depending on temperature rating
  • Grade 1 (thinnest): 0.5-0.8 mil enamel
  • Grade 2 (standard): 1-1.5 mil enamel
  • Grade 3 (heavy build): 2-3 mil enamel
  • Thicker enamel = better insulation, lower packing density in coil

Cable jacket thickness:

  • Ethernet Cat6 cable jacket: 20-30 mils
  • Power cord (SJOOW): 60-80 mils
  • Mining cable: 125-250 mils (extreme abrasion resistance)

6. Sheet Metal and Gauge Systems

Sheet metal thickness is specified in gauge numbers, but actual thickness is in decimal inches (mils):

Manufacturer's Standard Gauge (steel):

  • 10-gauge = 135 mils (0.1345″)
  • 14-gauge = 75 mils (0.0747″)
  • 20-gauge = 36 mils (0.0359″)
  • 24-gauge = 24 mils (0.0239″)

Confusion and standardization issues:

  • Gauge numbers are not universal: steel gauge ≠ aluminum gauge ≠ galvanized gauge
  • Modern practice: Always specify in decimal inches (mils) to avoid ambiguity
  • Example: "0.060″ aluminum" (60 mils) instead of "14-gauge aluminum"

HVAC ductwork:

  • Residential ducts: 24-26 gauge (18-30 mils)
  • Commercial ducts: 20-22 gauge (33-42 mils)
  • Galvanized coating adds 2-5 mils to thickness

Automotive body panels:

  • Hood outer skin: 28-30 mils (0.7-0.8 mm)
  • Door outer skin: 26-28 mils
  • Roof panel: 28-32 mils
  • Frame rails: 90-120 mils (2.3-3.0 mm)

7. Quality Control and Standards Compliance

Mil-based specifications appear in thousands of ASTM, ANSI, SAE, and military standards:

ASTM coating standards:

  • ASTM D3359: Adhesion of coatings (measured after cutting through coating, thickness in mils)
  • ASTM D1186: Paint film thickness (magnetic gauges calibrated in mils)
  • ASTM D6132: Nondestructive measurement of dry film thickness (mils)

Military specifications (MIL-SPEC):

  • MIL-DTL-53030: Primer coating, epoxy, 2-3 mils DFT
  • MIL-PRF-85285: Coating, polyurethane, aircraft, 1.5-2.5 mils
  • Compliance requires thickness measurement at specified intervals

Building codes and construction:

  • International Residential Code (IRC): Vapor retarders minimum 6 mils
  • Roofing underlayment: Minimum thickness specifications in mils
  • Window film (safety/security): 4-14 mils for various protection levels

Automotive and aerospace:

  • SAE J1960: Brake hose specifications (wall thickness in inches/mils)
  • AS9100 (aerospace quality): Dimensional inspections recorded in mils
  • Engine bearing clearances: Specified in mils (e.g., 1.5-2.5 mils for main bearings)

Additional Unit Information

About Kilometer (km)

How many meters are in a kilometer?

There are exactly 1,000 meters in 1 kilometer. This relationship is definitional—the prefix "kilo-" means 1,000 in the metric system.

Converting kilometers to meters: Multiply by 1,000

  • 1 km = 1,000 m
  • 2.5 km = 2,500 m
  • 0.5 km = 500 m
  • 10 km = 10,000 m

Converting meters to kilometers: Divide by 1,000

  • 1,500 m = 1.5 km
  • 5,000 m = 5 km
  • 500 m = 0.5 km
  • 42,195 m = 42.195 km (marathon distance)

The metric system's decimal structure makes these conversions simple—just move the decimal point three places.

How many kilometers are in a mile?

One mile equals exactly 1.609344 kilometers. This conversion factor was established through the 1959 international yard and pound agreement, which defined the yard (and thus the mile) in terms of meters.

Quick conversions:

  • 1 mile = 1.609 km
  • 5 miles = 8.047 km
  • 10 miles = 16.093 km
  • 26.2 miles (marathon) = 42.195 km

Reverse conversion: 1 kilometer = 0.621371 miles

  • 1 km ≈ 0.62 miles (about 5/8 of a mile)
  • 5 km = 3.107 miles
  • 10 km = 6.214 miles
  • 100 km = 62.137 miles

Mental approximation: For rough estimates, remember "5 miles ≈ 8 km" or "8 km ≈ 5 miles." This Fibonacci-pair approximation gives about 1% accuracy and is easy to remember. More roughly, "1 mile ≈ 1.6 km" works for casual conversion.

What does 'kilo' mean in kilometer?

The prefix "kilo-" means one thousand (1,000). It derives from the Greek word khilioi, meaning thousand.

In the metric system, "kilo-" consistently indicates multiplication by 1,000:

  • 1 kilometer (km) = 1,000 meters
  • 1 kilogram (kg) = 1,000 grams
  • 1 kiloliter (kL) = 1,000 liters
  • 1 kilobyte (kB) = 1,000 bytes (in decimal notation)
  • 1 kilowatt (kW) = 1,000 watts

This consistent prefix system makes the metric system easy to learn. Once you know "kilo = 1,000," you can understand any kilo- measurement immediately.

Other common metric prefixes:

  • Mega- (M) = 1,000,000 (million)
  • Kilo- (k) = 1,000 (thousand)
  • Hecto- (h) = 100 (hundred)
  • Deca- (da) = 10 (ten)
  • Deci- (d) = 0.1 (tenth)
  • Centi- (c) = 0.01 (hundredth)
  • Milli- (m) = 0.001 (thousandth)

Is a kilometer longer or shorter than a mile?

A kilometer is shorter than a mile. One mile equals approximately 1.61 kilometers, making a mile about 61% longer than a kilometer.

Comparison:

  • 1 mile = 1.609344 km
  • 1 km = 0.621371 miles

Practical comparison:

  • 5K race = 3.11 miles (shorter than 5 miles)
  • 10K race = 6.21 miles (shorter than 10 miles)
  • 100 km = 62.1 miles (significantly shorter than 100 miles)

Mental shortcut: Think "kilometers are smaller, so you need more of them." To cover the same distance:

  • 100 miles requires 161 kilometers
  • 100 kilometers equals only 62 miles

This difference matters when traveling internationally. A road sign showing "Paris 100 km" means about 62 miles—much closer than "100 miles" would be. Speed limits work the same way: "100 km/h" equals about 62 mph, considerably slower than "100 mph."

Why does most of the world use kilometers instead of miles?

Approximately 195 of 198 countries use kilometers because the metric system is simpler, more logical, and internationally standardized. Only the United States, Myanmar, and Liberia officially use miles, with Myanmar gradually transitioning to metric.

Decimal Simplicity: The metric system uses consistent base-10 relationships:

  • 1 km = 1,000 m (easy conversion)
  • Compare to: 1 mile = 1,760 yards = 5,280 feet (complex conversion)

Children in metric countries learn one simple rule: move the decimal point. American children must memorize: 12 inches per foot, 3 feet per yard, 1,760 yards per mile.

International Trade: The Metre Convention (1875) established metric as the international scientific and commercial standard. Countries adopting metric gained advantages in international trade, scientific collaboration, and technical documentation.

Post-Colonial Transitions: Former British colonies gradually converted from imperial to metric:

  • Australia: 1970s
  • Canada: 1970s-1980s (though some imperial usage persists)
  • India: 1950s-1960s
  • South Africa: 1970s

Only the United Kingdom retained miles for road signage despite otherwise adopting metric.

US Resistance: America resisted conversion due to:

  • Massive infrastructure costs (replacing millions of road signs)
  • Public opposition (polls show Americans prefer familiar units)
  • No perceived benefit justifying disruption and expense
  • "Metric Conversion Act" of 1975 made metric voluntary, not mandatory

Scientific Reality: Even the US uses metric in science, medicine, and military. The paradox: US scientists publish in metric while consumers shop in imperial.

How do you convert speed from mph to km/h?

To convert miles per hour (mph) to kilometers per hour (km/h), multiply by 1.609344. This gives exact results.

Formula: km/h = mph × 1.609344

Common speed conversions:

  • 30 mph = 48.3 km/h (urban speed limit)
  • 55 mph = 88.5 km/h (rural highway)
  • 60 mph = 96.6 km/h (≈100 km/h common highway limit)
  • 70 mph = 112.7 km/h
  • 75 mph = 120.7 km/h
  • 80 mph = 128.7 km/h

Reverse conversion (km/h to mph): Divide by 1.609344, or multiply by 0.621371

  • 50 km/h = 31.1 mph (urban limit in metric countries)
  • 90 km/h = 55.9 mph (rural road)
  • 100 km/h = 62.1 mph (common highway limit)
  • 110 km/h = 68.3 mph
  • 120 km/h = 74.6 mph
  • 130 km/h = 80.8 mph (German autobahn advisory speed)

Mental approximation: Multiply mph by 1.6 for quick estimates:

  • 60 mph × 1.6 ≈ 96 km/h (actual: 96.6, very close)
  • 70 mph × 1.6 ≈ 112 km/h (actual: 112.7, very close)

Or divide km/h by 1.6 for reverse estimate:

  • 100 km/h ÷ 1.6 ≈ 62.5 mph (actual: 62.1, close enough)

Why it matters: Tourists driving in foreign countries must convert speed limits mentally to avoid speeding tickets. Rental cars may show speedometers in only one unit, requiring constant mental conversion.

What's the difference between km and km²?

Kilometers (km) measure linear distance in one dimension—how far apart two points are, or how long something stretches.

Square kilometers (km²) measure area in two dimensions—how much surface space something covers.

Linear distance (km):

  • Road distance: "Paris is 100 km from here"
  • Running race: "10 km race"
  • River length: "Danube River is 2,850 km long"
  • Border: "3,000 km border with neighboring country"

Area (km²):

  • City size: "Paris covers 105 km²"
  • Country size: "France has an area of 640,000 km²"
  • Lake surface: "Lake Geneva covers 580 km²"
  • Forest: "National park protects 1,200 km² of wilderness"

The math:

  • Multiplying two distances creates area: 10 km × 5 km = 50 km²
  • 1 km² = 1,000,000 m² = 100 hectares
  • A square with 1 km sides has area of 1 km²
  • A square with 10 km sides has area of 100 km² (not 10 km!)

Common confusion: "The city is 50 km" is incomplete—50 km in which direction? Better: "The city center is 50 km away" (linear distance) or "The city covers 200 km²" (area).

How far is a 5K race in miles?

A 5K race is 3.107 miles. The "K" in "5K" stands for kilometers, so 5K means 5 kilometers.

Exact conversion: 5 km × 0.621371 miles/km = 3.10686 miles ≈ 3.11 miles

For practical purposes: 5K ≈ 3.1 miles (slightly over 3 miles)

Common running distances:

  • 5K: 5 km = 3.11 miles (popular beginner race distance)
  • 10K: 10 km = 6.21 miles (popular intermediate distance)
  • 15K: 15 km = 9.32 miles
  • Half-marathon: 21.0975 km = 13.11 miles (exactly half of marathon)
  • Marathon: 42.195 km = 26.219 miles
  • 50K: 50 km = 31.07 miles (ultramarathon)
  • 100K: 100 km = 62.14 miles (ultramarathon)

Why "K" notation? Running races worldwide use kilometer distances even in countries that otherwise use miles (like the US). This creates universal race standards—a 5K is the same distance whether run in New York, Paris, or Tokyo. The "K" abbreviation became standard running terminology.

Pace conversion: A runner completing 5K in 25 minutes averages:

  • 5:00 per kilometer (25 minutes ÷ 5 km)
  • 8:03 per mile (25 minutes ÷ 3.107 miles)

How do you calculate distance on a map with a kilometer scale?

Map scales show how many kilometers in the real world correspond to a unit distance on the map. Common map scales for road maps use kilometers.

Common scale notations:

  • 1:100,000 means 1 cm on map = 100,000 cm (1 km) in reality
  • 1:250,000 means 1 cm on map = 250,000 cm (2.5 km) in reality
  • 1:50,000 means 1 cm on map = 50,000 cm (0.5 km or 500 m) in reality

Using the graphic scale: Most maps include a graphic scale bar showing distances directly:

|——————|
0      50     100 km

Measuring distance:

  1. Use a ruler or string to measure the map distance
  2. Compare to the scale bar or use the ratio
  3. Calculate actual distance

Example: On a 1:100,000 scale map:

  • Measure 5 cm between two cities
  • 5 cm × 1 km/cm = 5 km actual distance

For curved routes (roads, rivers): Lay a string along the curved path, then measure the string length against the scale.

Digital maps: Online mapping tools calculate distances automatically, displaying both kilometers and miles. Google Maps, for instance, shows "15 km" or "9.3 mi" depending on regional settings.

What's the origin of the marathon distance 42.195 kilometers?

The marathon distance of 42.195 kilometers (26 miles, 385 yards) has a fascinating history combining ancient legend with modern royal preference.

Ancient Legend: The marathon commemorates the run of Greek soldier Pheidippides, who allegedly ran from the Battle of Marathon to Athens (about 40 km) to announce victory over Persia in 490 BCE, then died from exhaustion. This legend inspired the modern marathon race.

Original Olympic Distance (1896-1908): Early Olympic marathons varied in distance, roughly 40 km but not standardized. Different Olympic marathons measured 40 km (1896 Athens), 40.26 km (1900 Paris), 41.86 km (1904 St. Louis), 40 km (1906 Athens).

1908 London Olympics—The Defining Race: The modern distance was set for the 1908 London Olympics. The race began at Windsor Castle and finished at the Olympic Stadium. Originally planned as 26 miles, an extra 385 yards was added so the race would finish directly in front of the royal box where Queen Alexandra sat.

Total distance: 26 miles + 385 yards = 26.219 miles = 42.195 kilometers

Standardization (1921): The International Amateur Athletic Federation (IAAF) officially adopted 42.195 km as the standard marathon distance in 1921, codifying the 1908 London course distance for all future marathons.

Modern Usage: Every certified marathon worldwide measures exactly 42.195 kilometers (or 26 miles 385 yards). Famous marathons—Boston, New York City, London, Berlin, Tokyo—all use this precise distance. Race courses must be certified to ensure accuracy, typically measured using calibrated bicycle wheels.

Half-Marathon: Exactly half of 42.195 km = 21.0975 km (13.1 miles), also standardized for half-marathon races worldwide.

About Mil/Thou (mil)

Is a mil the same as a millimeter?

No—they are very different units, despite similar names.

  • 1 mil (imperial) = 0.001 inches = 0.0254 mm = 25.4 micrometers
  • 1 millimeter (metric) = 0.001 meters = 39.37 mils

Key difference: 1 millimeter is approximately 40 times larger than 1 mil. Confusing these units results in massive errors (40× too thick or thin).

Origin of confusion: "Mil" sounds like an abbreviation for "millimeter," but it actually comes from the Latin "mille" (thousand), meaning one thousandth of an inch. In some non-English languages, "mil" or "mil." is used as slang for millimeter, compounding confusion in international contexts.

Prevention: Always write units explicitly—"6 mils (0.15 mm)" or "0.2 mm (7.9 mils)"—in international specifications.

What does 'thou' mean, and is it the same as a mil?

Yes—"thou" and "mil" are exactly the same measurement: one thousandth of an inch (0.001″).

Regional differences:

  • "Mil" is standard in American technical documentation, industry standards (ASTM, ANSI, SAE), and scientific publications.
  • "Thou" is common in British English shop-floor terminology, machining, and colloquial engineering speech.

Etymology:

  • "Mil" comes from Latin "mille" (thousand)
  • "Thou" is an abbreviation of "thousandth" (of an inch)

Usage examples:

  • American engineer: "Tolerance is plus or minus five mils."
  • British machinist: "Take another two thou off the diameter."
  • Both mean exactly: 0.005″ and 0.002″ respectively.

Documentation practice: Technical drawings and specifications predominantly use "mil" or the decimal notation (0.001″), while "thou" appears more in verbal communication and informal notes.

How many mils are in an inch?

Exactly 1,000 mils = 1 inch by definition.

The mil is defined as one thousandth of an inch:

  • 1 mil = 0.001″
  • 1 inch = 1,000 mils

Common fractions converted to mils:

  • 1/2″ = 500 mils
  • 1/4″ = 250 mils
  • 1/8″ = 125 mils
  • 1/16″ = 62.5 mils
  • 1/32″ = 31.25 mils
  • 1/64″ = 15.625 mils

This decimal subdivision makes arithmetic much easier than traditional fractional inches (no need to find common denominators).

Why do we still use mils instead of millimeters?

Several practical and historical reasons explain the mil's persistence in American industry despite global metrication:

1. Legacy infrastructure (strongest reason):

  • Billions of dollars invested in tooling, fixtures, gauges, and manufacturing equipment calibrated in inches/mils
  • Converting existing designs and technical documentation is prohibitively expensive and risky
  • Critical industries (aerospace, defense, medical) have decades of proven designs that cannot be easily converted

2. Compatibility and interchangeability:

  • Replacing a part requires exact dimensional compatibility
  • Mixed mil/metric systems in a single product line risk catastrophic errors (e.g., 1999 Mars Climate Orbiter loss due to metric/imperial confusion)
  • Entire supply chains (thousands of vendors) must convert simultaneously for compatibility

3. Established standards:

  • American Wire Gauge (AWG) is based on mils
  • ASTM, ANSI, SAE, and military specifications (MIL-SPEC) use mils
  • Rewriting thousands of standards documents is a monumental undertaking

4. Practical advantages in some contexts:

  • PCB design: 100-mil (0.1″) pin spacing is convenient, memorable, and grid-friendly
  • Engineering calculations: Tolerances like "±5 mils" are intuitive to experienced engineers
  • Decimal-inch system avoids fractional arithmetic while maintaining imperial base

5. Economic inertia:

  • No compelling economic driver for conversion in purely domestic manufacturing
  • Cost of conversion (training, documentation, tooling) outweighs benefits in mature industries

6. Cultural and educational factors:

  • American engineers trained in decimal-inch system for generations
  • Familiarity breeds efficiency—experienced machinists "think in mils"

Counterpoint: Industries with strong international ties (automotive, consumer electronics) increasingly use dual dimensioning (both mils and mm) or have shifted to metric. New designs often start in metric, but maintenance of existing imperial products ensures mils remain relevant for decades.

How do I convert mils to micrometers (microns)?

Multiply mils by 25.4 to get micrometers (μm):

Formula: μm = mils × 25.4

Examples:

  • 1 mil × 25.4 = 25.4 μm
  • 5 mils × 25.4 = 127 μm
  • 10 mils × 25.4 = 254 μm
  • 100 mils × 25.4 = 2,540 μm (= 2.54 mm)

Reverse conversion (micrometers to mils): Divide by 25.4

Formula: mils = μm ÷ 25.4

Examples:

  • 50 μm ÷ 25.4 = 1.97 mils (≈ 2 mils)
  • 100 μm ÷ 25.4 = 3.94 mils (≈ 4 mils)
  • 250 μm ÷ 25.4 = 9.84 mils (≈ 10 mils)

Why 25.4? Because 1 inch = 25.4 mm exactly (by the 1959 international agreement), and 1 mil = 0.001 inch, so:

  • 1 mil = 0.001 inch × 25.4 mm/inch = 0.0254 mm = 25.4 μm

Practical use: Coating thickness specifications often appear in both units:

  • "Apply to 5 mils (127 μm) dry film thickness"
  • Ensures international suppliers understand the requirement

What is 1 mil in metric units?

1 mil = 25.4 micrometers (μm) = 0.0254 millimeters (mm) exactly.

Complete metric equivalents:

  • 1 mil = 25.4 μm (most common metric expression for precision work)
  • 1 mil = 0.0254 mm (less common, but useful for larger scales)
  • 1 mil = 0.0000254 meters
  • 1 mil = 25,400 nanometers (semiconductor/optics context)

Reverse:

  • 1 micrometer (μm) = 0.03937 mil (≈ 1/25 mil)
  • 1 millimeter (mm) = 39.37 mils (≈ 40 mils for quick estimation)

Why exactly 25.4? The 1959 international yard and pound agreement defined:

  • 1 inch = 25.4 mm exactly
  • Therefore: 1 mil = 0.001 inch = 25.4 μm exactly

This is not an approximation—it's the legal definition linking imperial and metric systems.

How thick is 4 mils?

4 mils = 0.004 inches = 0.1 mm (100 micrometers) — about the thickness of standard printer paper.

Everyday comparisons for 4 mils:

  • Two sheets of standard copy paper stacked (each ~4 mils)
  • Human hair is roughly 2× thicker (70-100 mils vs. 4 mils)
  • Credit card is roughly 7.5× thicker (30 mils vs. 4 mils)
  • Fingernail is roughly 5-7× thicker (20-30 mils)

Common uses of 4-mil thickness:

  • Printer/copy paper (20 lb bond): 3.5-4.5 mils
  • Automotive paint (single coat): 1.5-2 mils base + 1.5-2 mils clear = 4-5 mils total
  • Polyethylene sheeting (light-duty drop cloths): 3-4 mils
  • House paint (exterior, dry film): 1.5-2 coats × 2 mils each = 4-5 mils

Feeling 4 mils: Too thin to feel accurately with fingers—requires calipers or micrometer to measure precisely.

What is considered a tight tolerance in mils?

"Tight" tolerances depend on the manufacturing process and application, but general industry standards are:

General fabrication and commercial machining:

  • Loose tolerance: ±10-20 mils (±0.010-0.020″)
  • Standard tolerance: ±5 mils (±0.005″)
  • Tight tolerance: ±1-2 mils (±0.001-0.002″)

Precision machining:

  • Standard: ±1 mil (±0.001″)
  • Tight: ±0.5 mil (±0.0005″)
  • Very tight: ±0.1-0.2 mil (±100-200 microinches)

Ultra-precision (grinding, diamond turning):

  • Tight: ±0.05 mil (±50 microinches = ±1.3 μm)
  • Extremely tight: ±0.01 mil (±10 microinches = ±0.25 μm)

Application examples:

  • Engine piston fit: 1-3 mils clearance (0.001-0.003″) — critical for sealing and oil retention
  • Bearing journals: ±0.5 mil tolerance — affects bearing life and performance
  • Hydraulic valve spool: 0.5-1 mil clearance — controls internal leakage
  • Gauge blocks (Grade 0): ±0.05 mil (±50 microinches) — calibration standard
  • Optical lens mounts: ±0.1 mil — affects focus and alignment

Cost impact: Tighter tolerances require:

  • More precise equipment (CNC machining centers, grinders)
  • Slower machining speeds and feeds
  • More frequent inspection
  • Skilled machinists
  • Climate-controlled environment (for extreme precision)

Rule of thumb: Each 10× reduction in tolerance (e.g., ±10 mils → ±1 mil → ±0.1 mil) roughly doubles or triples machining cost.

How do you measure thickness in mils?

Several tools measure thickness in mils, depending on the material and access:

1. Micrometer (most common for solid parts):

  • Handheld precision tool with anvil and spindle
  • Resolution: 0.001″ (1 mil) for standard micrometers; 0.0001″ (0.1 mil) for digital or vernier micrometers
  • How to use: Place object between anvil and spindle, turn thimble until it contacts with light resistance, read measurement
  • Accuracy: ±0.0001″ (±0.1 mil) or better when calibrated
  • Best for: Solid materials (sheet metal, plastic, gaskets, wire)

2. Digital calipers:

  • Resolution: Typically 0.001″ (1 mil) or 0.01 mm
  • Easier to read than dial calipers (digital display)
  • Less precision than micrometers (±1-2 mils accuracy)
  • Best for: Quick measurements, larger parts, non-critical dimensions

3. Coating thickness gauges (for paint/plating):

  • Magnetic gauges (ferrous substrates): Reed switch or Hall effect sensor detects distance through non-magnetic coating
  • Eddy current gauges (non-ferrous substrates): Measures impedance change due to coating thickness
  • Ultrasonic gauges: Sound wave reflection for non-metallic coatings or any substrate
  • Resolution: Typically 0.1 mil (2.5 μm) to 1 mil depending on model
  • Best for: Paint, powder coating, galvanizing, plating, anodizing on metal substrates

4. Wet film thickness gauges (paint application):

  • Notch/comb gauges: Comb with graduated teeth (2, 4, 6, 8, 10 mils)
  • How to use: Insert comb perpendicular into wet paint; highest clean tooth (no paint) indicates thickness
  • Resolution: Depends on tooth spacing (typically 2 mil increments)
  • Best for: Field inspection during painting to ensure proper application

5. Dial indicators (for comparing thickness):

  • Measures variation rather than absolute thickness
  • Place part on reference surface, indicator plunger contacts top
  • Resolution: 0.001″ (1 mil) or 0.0001″ (0.1 mil) for precision models
  • Best for: Checking flatness, parallelism, thickness variation across a surface

6. Optical/laser micrometers (non-contact):

  • Laser beam measures shadow of object passing through
  • Resolution: Sub-mil (0.01-0.1 mil) depending on model
  • Best for: Soft materials (rubber, foam) or high-speed production inspection (wire, cable)

Calibration: All precision measuring tools require regular calibration against gauge blocks or calibration standards to maintain accuracy.

Why is PCB design done in mils?

PCB (printed circuit board) design uses mils primarily due to historical legacy and practical convenience in American electronics manufacturing:

1. Component standards based on 100-mil spacing:

  • Through-hole components (resistors, ICs, connectors) were standardized with 0.1″ (100 mil) pin spacing in the 1950s-1970s
  • Dual in-line packages (DIP): Pins spaced at 100 mil intervals
  • Perfboard and breadboards: 100 mil grid for prototyping
  • This 100-mil standard became embedded in component libraries and CAD software

2. PCB design grid convenience:

  • Grid snapping: CAD software uses grids (50 mil, 25 mil, 10 mil, 5 mil, 1 mil)
  • 100 mil grid allows easy component placement aligned with standard pin spacing
  • Fractional grids: 50 mil (0.05″), 25 mil (0.025″) for routing between pins
  • Metric equivalents (2.54 mm, 1.27 mm, 0.635 mm) are awkward, non-round numbers

3. Trace width and spacing in convenient numbers:

  • Typical design rules: 6 mil trace / 6 mil space (easier to remember than "0.15 mm / 0.15 mm")
  • High-current traces: 15 mil, 20 mil, 30 mil widths (round numbers)
  • Advanced designs: 3 mil / 3 mil minimum capability

4. Standard PCB thickness:

  • 62 mils (1.57 mm) is the industry-standard board thickness—originated in imperial measurements
  • Thinner boards: 31 mils (0.8 mm), 47 mils (1.2 mm)
  • Thicker boards: 93 mils (2.4 mm), 125 mils (3.2 mm)

5. Copper weight in oz/ft² naturally maps to mils:

  • 1 oz copper = 1.4 mils thick (34.8 μm)
  • 2 oz copper = 2.8 mils thick
  • Easy calculation for impedance and current capacity

6. Legacy and tool compatibility:

  • Enormous library of existing designs, footprints, and components in mil units
  • PCB CAD software (Altium, Eagle, OrCAD, KiCAD) default to mils in U.S. installations
  • Converting to metric risks errors and incompatibility with legacy designs

Modern trend: Some international PCB design now uses metric (especially in Europe and Asia), but American designs and military/aerospace specs remain overwhelmingly mil-based. Many CAD tools support dual dimensioning to bridge both systems.

Are mils still relevant today, or is it an obsolete unit?

Mils are absolutely still relevant and widely used in American manufacturing, despite global metrication trends. The unit is not obsolete—it remains the standard in several major industries:

Industries actively using mils today (2020s):

1. Printed circuit board (PCB) and electronics manufacturing:

  • Trace widths, spacing, and via sizes specified in mils
  • Component libraries and footprints use 100-mil pin spacing
  • Standard fabrication capabilities: "6 mil trace / 6 mil space"

2. Aerospace and defense:

  • Military specifications (MIL-SPEC) use mils for tolerances and coating thickness
  • Legacy aircraft designs (Boeing, Lockheed Martin) remain in decimal-inch/mil system
  • Interchangeable parts for decades-old platforms require dimensional consistency

3. Precision machining and manufacturing:

  • Tolerances routinely specified in mils (±1 mil, ±5 mil)
  • Micrometer readings in decimal inches (thousandths)
  • CNC programming often in inches/mils in American shops

4. Coating and painting industries:

  • ASTM and SSPC standards specify dry film thickness (DFT) in mils
  • Paint thickness gauges calibrated in mils
  • Industrial specifications: "8-10 mils total coating system"

5. Plastic film and flexible packaging:

  • Film thickness: "6-mil poly sheeting," "4-mil polyester film"
  • ASTM standards for plastic film thickness use mils

6. Wire and cable manufacturing:

  • American Wire Gauge (AWG) based on diameter in mils
  • Insulation thickness specified in mils over conductor

7. Sheet metal fabrication:

  • Actual thickness often specified in decimal inches (mils) to avoid gauge confusion
  • "0.063″ aluminum" (63 mils) instead of ambiguous "14-gauge"

Why mils persist:

  • Billions in tooling and infrastructure calibrated in imperial units
  • Legacy designs: Decades of proven engineering in mils cannot be easily converted
  • Risk avoidance: Metric/imperial conversion errors are costly and dangerous (Mars Climate Orbiter)
  • Supply chain compatibility: Entire ecosystems of suppliers and manufacturers use consistent units
  • No economic driver: Purely domestic manufacturing has little incentive to convert

Metric adoption: Global companies (automotive, consumer electronics) increasingly use dual dimensioning (both mils and mm) or shift new designs to metric, but maintenance and support of existing products ensures mils remain relevant for decades.

Conclusion: Mils are actively used, not obsolete, and will remain standard in American manufacturing for the foreseeable future—especially in aerospace, defense, electronics, and precision machining.

What's the difference between a mil and a milliradian?

Completely different units from different measurement domains—they only share a similar name:

Mil (length):

  • Unit of length = 0.001 inches (one thousandth of an inch)
  • Used in manufacturing, coating thickness, electronics, tolerances
  • Example: "The coating is 5 mils thick."

Milliradian (angular measurement):

  • Unit of angle = 0.001 radians ≈ 0.0573 degrees
  • Used in artillery, ballistics, marksmanship, optics, surveying
  • Example: "The rifle scope adjustment is 0.1 milliradian per click."

No conversion between them—they measure fundamentally different things (distance vs. angle).

Confusing terminology: In military and shooting contexts, "mil" is often shorthand for milliradian (angular mil), while in manufacturing, "mil" always means 0.001 inch (linear mil). Context determines meaning.

Additional angular "mil" units (adding to confusion):

  • NATO mil (milliradian): 1/1000 radian ≈ 0.0573°
  • Swedish/metric mil: 1/6000 of a circle ≈ 0.06° (slightly larger than milliradian)
  • Artillery mil (historical): 1/6400 of a circle ≈ 0.05625°

Summary: Unless you're discussing ballistics or optics, "mil" refers to 0.001 inch in American industry and manufacturing.

Conversion Table: Kilometer to Mil/Thou

Kilometer (km)Mil/Thou (mil)
0.519,685,039.37
139,370,078.74
1.559,055,118.11
278,740,157.48
5196,850,393.701
10393,700,787.402
25984,251,968.504
501,968,503,937.008
1003,937,007,874.016
2509,842,519,685.039
50019,685,039,370.079
1,00039,370,078,740.158

People Also Ask

How do I convert Kilometer to Mil/Thou?

To convert Kilometer to Mil/Thou, enter the value in Kilometer in the calculator above. The conversion will happen automatically. Use our free online converter for instant and accurate results. You can also visit our length converter page to convert between other units in this category.

Learn more →

What is the conversion factor from Kilometer to Mil/Thou?

The conversion factor depends on the specific relationship between Kilometer and Mil/Thou. You can find the exact conversion formula and factor on this page. Our calculator handles all calculations automatically. See the conversion table above for common values.

Can I convert Mil/Thou back to Kilometer?

Yes! You can easily convert Mil/Thou back to Kilometer by using the swap button (⇌) in the calculator above, or by visiting our Mil/Thou to Kilometer converter page. You can also explore other length conversions on our category page.

Learn more →

What are common uses for Kilometer and Mil/Thou?

Kilometer and Mil/Thou are both standard units used in length measurements. They are commonly used in various applications including engineering, construction, cooking, and scientific research. Browse our length converter for more conversion options.

For more length conversion questions, visit our FAQ page or explore our conversion guides.

All Length Conversions

Meter to KilometerMeter to HectometerMeter to DecimeterMeter to CentimeterMeter to MillimeterMeter to InchMeter to FootMeter to YardMeter to MileMeter to Nautical MileMeter to MicrometerMeter to NanometerMeter to Light YearMeter to Astronomical UnitMeter to ParsecMeter to AngstromMeter to Point (Typography)Meter to Mil/ThouMeter to FathomMeter to FurlongMeter to Link (Gunter's)Meter to PaceMeter to SpanMeter to DigitMeter to Cable LengthMeter to EllMeter to FingerMeter to Roman MileMeter to StadionMeter to Chi (Chinese)Meter to Shaku (Japanese)Meter to Li (Chinese)Meter to ToiseMeter to BoltMeter to RopeMeter to SmootMeter to SajeneMeter to KenMeter to WaMeter to VaraMeter to AlnMeter to Cubit (Royal/Egyptian)Meter to VerstaMeter to ArpentMeter to Ri (Japanese)Meter to KlafterMeter to YojanaMeter to SkeinKilometer to MeterKilometer to HectometerKilometer to DecimeterKilometer to CentimeterKilometer to MillimeterKilometer to InchKilometer to FootKilometer to YardKilometer to MileKilometer to Nautical MileKilometer to MicrometerKilometer to NanometerKilometer to Light YearKilometer to Astronomical UnitKilometer to ParsecKilometer to AngstromKilometer to Point (Typography)Kilometer to FathomKilometer to FurlongKilometer to Link (Gunter's)Kilometer to PaceKilometer to SpanKilometer to DigitKilometer to Cable LengthKilometer to EllKilometer to FingerKilometer to Roman MileKilometer to StadionKilometer to Chi (Chinese)Kilometer to Shaku (Japanese)Kilometer to Li (Chinese)Kilometer to ToiseKilometer to BoltKilometer to RopeKilometer to SmootKilometer to SajeneKilometer to KenKilometer to WaKilometer to VaraKilometer to AlnKilometer to Cubit (Royal/Egyptian)Kilometer to VerstaKilometer to ArpentKilometer to Ri (Japanese)Kilometer to KlafterKilometer to YojanaKilometer to SkeinHectometer to MeterHectometer to KilometerHectometer to DecimeterHectometer to CentimeterHectometer to MillimeterHectometer to InchHectometer to FootHectometer to YardHectometer to MileHectometer to Nautical MileHectometer to MicrometerHectometer to NanometerHectometer to Light YearHectometer to Astronomical UnitHectometer to ParsecHectometer to AngstromHectometer to Point (Typography)Hectometer to Mil/ThouHectometer to FathomHectometer to FurlongHectometer to Link (Gunter's)Hectometer to PaceHectometer to SpanHectometer to DigitHectometer to Cable Length

Verified Against Authority Standards

All conversion formulas have been verified against international standards and authoritative sources to ensure maximum accuracy and reliability.

NIST Guide for the Use of SI

National Institute of Standards and TechnologyOfficial US standards for length measurements

SI Brochure

Bureau International des Poids et MesuresInternational System of Units official documentation

Last verified: December 3, 2025