Micrometer to Point (Typography) Converter
Convert micrometers to points with our free online length converter.
Quick Answer
1 Micrometer = 0.002835 points
Formula: Micrometer × conversion factor = Point (Typography)
Use the calculator below for instant, accurate conversions.
Our Accuracy Guarantee
All conversion formulas on UnitsConverter.io have been verified against NIST (National Institute of Standards and Technology) guidelines and international SI standards. Our calculations are accurate to 10 decimal places for standard conversions and use arbitrary precision arithmetic for astronomical units.
Micrometer to Point (Typography) Calculator
How to Use the Micrometer to Point (Typography) Calculator:
- Enter the value you want to convert in the 'From' field (Micrometer).
- The converted value in Point (Typography) will appear automatically in the 'To' field.
- Use the dropdown menus to select different units within the Length category.
- Click the swap button (⇌) to reverse the conversion direction.
How to Convert Micrometer to Point (Typography): Step-by-Step Guide
Converting Micrometer to Point (Typography) involves multiplying the value by a specific conversion factor, as shown in the formula below.
Formula:
1 Micrometer = 0.00283464 pointsExample Calculation:
Convert 10 micrometers: 10 × 0.00283464 = 0.0283464 points
Disclaimer: For Reference Only
These conversion results are provided for informational purposes only. While we strive for accuracy, we make no guarantees regarding the precision of these results, especially for conversions involving extremely large or small numbers which may be subject to the inherent limitations of standard computer floating-point arithmetic.
Not for professional use. Results should be verified before use in any critical application. View our Terms of Service for more information.
Need to convert to other length units?
View all Length conversions →What is a Micrometer and a Point (Typography)?
A micrometer is a unit of length in the metric system equal to one millionth (1/1,000,000) of a meter. The term derives from the Greek "mikros" (small) and "metron" (measure). It is abbreviated as μm, where μ (mu) is the Greek letter representing the prefix "micro-."
Note on terminology: While "micron" was widely used from 1879 to 1967, it was officially deprecated by the International System of Units (SI) in favor of "micrometer" to maintain consistent naming conventions. However, "micron" remains common in some industries, particularly semiconductor manufacturing and filtration.
The micrometer sits between the millimeter and nanometer on the metric scale:
- 1 meter = 1,000,000 micrometers
- 1 millimeter = 1,000 micrometers
- 1 micrometer = 1,000 nanometers
This scale makes micrometers perfect for measuring objects visible under optical microscopes but invisible to the naked eye.
Convert Micrometers to Other Units →
The Desktop Publishing Point
The modern typographic point is defined as exactly 1/72 of an international inch. This creates the mathematically convenient relationship:
- 1 point (pt) = 1/72 inch = 0.013888... inches
- 1 point = 0.352777... millimeters
- 72 points = 1 inch (exactly)
- 1 inch = 25.4 mm (by international definition)
This definition, known as the PostScript point or DTP point (Desktop Publishing point), was established by Adobe Systems in the 1980s and has become the universal standard for all modern typography.
The Em Square and Font Height
When we say "12 pt font," we're technically measuring the em square—the metal block that held the physical letter in traditional typesetting. This em square includes:
- Ascenders: Parts of letters extending above the baseline (like the top of 'h' or 'b')
- Descenders: Parts extending below the baseline (like the tail of 'g' or 'y')
- Built-in spacing: Extra vertical space above and below letters
This means 12 pt text doesn't have letters exactly 1/6 inch tall—the actual visible letter height (called x-height) is typically 60-70% of the point size, with the rest being built-in spacing. This spacing prevents lines of text from touching each other.
Points vs. Picas
Typography traditionally pairs the point with the pica:
- 1 pica = 12 points = 1/6 inch
- 6 picas = 1 inch
- 1 pica ≈ 4.233 mm
Professional designers often measure larger typographic elements in picas. For example, a column width might be "20 picas" (3.33 inches) rather than "240 points." The pica provides a more manageable unit for page layout dimensions while maintaining exact mathematical relationships.
Historical Point Systems (Pre-Digital)
Before the DTP point standardization, multiple incompatible point systems existed:
Didot Point (Continental Europe):
- 1 Didot point ≈ 0.3759 mm
- Based on the French pied du roi (royal foot)
- Approximately 67.55 Didot points per inch
- Still occasionally referenced in European historical printing contexts
American/British Pica Point:
- 1 pica point ≈ 0.351459 mm
- 72.27 points per inch (not exactly 72!)
- Derived from metal type casting standards
- Also called the "Anglo-American point"
Fournier Point (Early French):
- Pierre Simon Fournier's original 1737 system
- Approximately 0.348 mm
- 72.989 points per French royal inch
- Largely replaced by Didot system by 1800
The digital revolution eliminated these variations. Today, when anyone uses "point" in typography, they mean the 1/72-inch DTP point unless explicitly stated otherwise.
Note: The Micrometer is part of the metric (SI) system, primarily used globally in science and trade. The Point (Typography) belongs to the imperial/US customary system.
History of the Micrometer and Point (Typography)
The concept of the micrometer emerged alongside the development of precision microscopy in the 17th and 18th centuries. As scientists like Robert Hooke and Antonie van Leeuwenhoek observed cells and microorganisms for the first time, they needed standardized ways to describe these microscopic dimensions.
The term "micron" (μ) was officially adopted at the First International Electrical Congress in Paris in 1879 as a convenient shorthand for one millionth of a meter. This simplified notation became widely used in scientific literature, particularly in biology, materials science, and optics.
In 1960, the International System of Units (SI) was established to create consistent naming conventions across all units. By 1967-1968, the SI officially deprecated "micron" in favor of "micrometer" to align with the systematic naming structure where prefixes like "micro-," "nano-," and "kilo-" are clearly indicated.
Despite this official change, the term "micron" persists in several industries:
- Semiconductor manufacturing: Process nodes like "5-micron technology"
- Filtration systems: "10-micron water filter"
- Materials science: Particle size specifications
- Aerospace: Surface finish requirements
The symbol μm is universally recognized in scientific and technical documentation, combining the Greek letter μ (representing the micro- prefix meaning 10⁻⁶) with m for meter.
Today, micrometers are fundamental to numerous high-precision fields, from medical diagnostics and semiconductor fabrication to quality control and environmental monitoring.
Early Typography: The Cicero and Finger-Width (1400s-1700s)
Early European printing used inconsistent measurements based on:
- The cicero: A unit based on the line width of a specific typeface (Cicero type), varying by region
- Local inches and feet: Each region had different inch definitions
- Finger widths and eyeball estimates: Printers adjusted type spacing by hand
This inconsistency made it nearly impossible to share typeface designs or maintain consistency across print shops.
Pierre Simon Fournier: The First Point System (1737)
French typefounder Pierre Simon Fournier le Jeune published "Table des proportions" (1737), introducing the first systematic point system:
- Based the point on the French royal inch (pouce du roi)
- Divided the inch into 72 points (a number divisible by many factors: 2, 3, 4, 6, 8, 9, 12)
- Created 20 standardized font sizes
- Named sizes after musical terms (e.g., "Petit-Canon," "Gros-Parangon")
Fournier's system brought mathematical precision to typography for the first time, allowing typefounders to create consistent, proportional type families.
François-Ambroise Didot: The Didot Point (1783)
François-Ambroise Didot, another French typefounder, refined Fournier's system by basing measurements on the pied du roi (royal foot):
- 1 Didot point = 1/72 of 1/12 of the pied du roi ≈ 0.3759 mm
- Larger than Fournier's point (about 7% bigger)
- Created the cicero as 12 Didot points
- Established type size naming still used today (e.g., corps 8, corps 12)
The Didot system became the standard across Continental Europe and remains influential in French and German typography traditions. Some European printing specifications still reference "Didot" even today when discussing historical typography.
American and British Variations (1800s)
The 19th century saw typography spread across the English-speaking world, but without international standards:
American Point System (established c. 1886):
- Created by the United States Type Founders Association
- Based on the pica: 1 pica = 0.166 inches
- Therefore: 1 point = 0.166/12 ≈ 0.013837 inches
- Result: approximately 72.27 points per inch
British Imperial Point:
- Similar to American system but based on British imperial inch
- Also approximately 72.27 points per inch
- Created incompatibilities when Britain and US used different inch definitions before 1959
This proliferation of standards created international printing chaos. A "12 point" font in France was noticeably different from "12 point" in Britain or America.
Adobe PostScript: The Digital Revolution (1982-1985)
The desktop publishing revolution began when Adobe Systems developed PostScript, a page description language for laser printers:
John Warnock and Charles Geschke (Adobe founders) faced a choice: adopt historical point systems with fractional relationships to inches, or create a new, mathematically clean standard.
They chose simplicity: 1 point = exactly 1/72 inch
This decision meant:
- Easy calculation: multiply by 72 to convert inches to points
- Clean pixel mapping on early displays (72 DPI screens made 1 point = 1 pixel)
- No fractional arithmetic in computer calculations
- Complete break from historical confusion
Apple LaserWriter and Macintosh (1985)
Apple Computer licensed Adobe PostScript for the Macintosh computer and LaserWriter printer (launched January 1985):
- First affordable desktop publishing system
- 72 DPI screen resolution matched PostScript's 72 points/inch
- Onscreen "What You See Is What You Get" (WYSIWYG): Text appeared on screen at the exact size it would print
- Revolutionary for designers: no more calculating conversions
The LaserWriter cost $7,000 (expensive but far cheaper than typesetting equipment costing $50,000+), making professional typography accessible to small businesses and independent designers.
Industry Standardization (1985-1995)
The DTP point rapidly became universal:
1987: Adobe releases Adobe Illustrator and Photoshop (1990), both using PostScript points
1987: PageMaker (Aldus, later Adobe) becomes industry-standard layout software
1990s: Microsoft adopts 72 points/inch in Word, PowerPoint, Publisher
1996: CSS (Cascading Style Sheets) defines the pt unit as 1/72 inch for web typography
2000s: All professional design software (InDesign, Quark, CorelDRAW) standardizes on DTP point
By 2000, the historical Didot and pica points had effectively vanished from active use. The DTP point achieved something remarkable: complete global standardization of a measurement unit in just 15 years.
Modern Digital Era (2000-Present)
Today's typography operates in a world of complete point standardization:
- Print design: All software uses 72 pt/inch
- Web design: CSS
ptunits defined as 1/72 inch (thoughpxandemare more common online) - Mobile apps: iOS, Android use point-based typography systems
- E-readers: Kindle, Apple Books use point-based font sizing
- Office software: Word, Google Docs, Apple Pages all use identical point measurements
The point has become so universal that most designers under 40 have never encountered historical point systems. The DTP point is simply "the point."
Common Uses and Applications: micrometers vs points
Explore the typical applications for both Micrometer (metric) and Point (Typography) (imperial/US) to understand their common contexts.
Common Uses for micrometers
1. Microscopy and Biology
Micrometers are the standard unit for measuring cells, bacteria, and other microorganisms under optical microscopes. Lab technicians and researchers use calibrated eyepiece scales marked in micrometers to measure biological specimens. Cell biology, microbiology, and histology all depend on micrometer measurements for specimen identification and analysis.
2. Semiconductor Manufacturing
The semiconductor industry uses micrometers (often called "microns") to specify process node sizes, though modern chips have moved to nanometer scales. Wafer thickness (typically 725 μm for 300mm wafers), photoresist layers, and older chip features are measured in micrometers. Quality control requires precise measurements to ensure manufacturing tolerances.
3. Precision Engineering
Manufacturing engineers specify tolerances in micrometers for high-precision components. CNC machining, grinding, and polishing operations achieve accuracies of ±1-10 μm. Measuring instruments like micrometers (the tool) can measure to 0.001 mm = 1 μm precision. Critical aerospace, medical device, and automotive components require micrometer-level quality control.
4. Fiber Optics and Telecommunications
Fiber optic cables have core diameters measured in micrometers: single-mode fibers typically use 8-10 μm cores, while multi-mode fibers range from 50-62.5 μm. The precise core diameter determines light transmission characteristics, bandwidth, and distance capabilities. Telecom technicians reference these specifications when installing and troubleshooting fiber networks.
5. Filtration and Air Quality
Filter manufacturers rate products by the size of particles they capture, measured in micrometers. HEPA filters capture 99.97% of particles ≥0.3 μm. Water filters, air purifiers, and industrial filtration systems all use micrometer ratings. Environmental agencies track PM2.5 (particulate matter <2.5 μm) and PM10 pollution, which pose respiratory health risks.
6. Medical Diagnostics
Medical laboratories measure blood cells in micrometers: red blood cells average 6-8 μm, while variations may indicate conditions like anemia. Pathologists examine tissue samples and tumor margins at micrometer scale. Medical device manufacturing (catheters, needles, implants) requires micrometer-precision specifications for safety and efficacy.
Convert Medical Measurements →
7. Surface Finish and Coatings
Surface roughness is measured in micrometers using parameters like Ra (average roughness). A mirror finish might be <0.1 μm Ra, while machined surfaces range from 0.8-25 μm Ra. Coating thickness—paint, anodizing, plating—is specified in micrometers to ensure corrosion protection and aesthetic quality.
When to Use points
1. Document Typography and Word Processing
Body Text Standards:
- 10-12 pt: Standard body text for business documents, reports, letters
- 11 pt: Often considered optimal for printed books (balance of readability and page economy)
- 12 pt: Default in Microsoft Word, Google Docs; universally acceptable for any document
- 14 pt: Large print books for readers with visual impairments
Heading Hierarchies: Professional documents typically use 3-5 heading levels with systematic point size progression:
- H1 (Title): 18-24 pt, bold
- H2 (Major sections): 16-18 pt, bold
- H3 (Subsections): 14-16 pt, bold
- H4 (Minor subsections): 12-14 pt, bold or italic
- Body text: 10-12 pt, regular
This creates clear visual hierarchy while maintaining readability.
2. Professional Graphic Design and Layout
Adobe Creative Suite Standards:
- InDesign: All text boxes, frames, and measurements in points
- Illustrator: Artboard rulers can display points; all typography in points
- Photoshop: Type tool uses points by default
Print Design Specifications:
- Business cards: Names typically 14-18 pt, contact info 8-10 pt
- Brochures: Headlines 24-36 pt, body text 9-11 pt
- Posters: Titles 48-144+ pt depending on viewing distance
- Magazine layouts: Body 9-10 pt (smaller for dense content), headlines 18-48 pt
Grid Systems: Many designers use point-based grids: 12 pt baseline grids ensure consistent vertical rhythm across pages.
3. Web Typography (CSS)
CSS supports points, though pixels and ems are more common for responsive design:
body {
font-size: 12pt; /* Equivalent to 16px at 96 DPI */
}
h1 {
font-size: 24pt; /* Prints at exactly 1/3 inch tall */
}
@media print {
body { font-size: 11pt; } /* Optimize for printed output */
}
Print Stylesheets: Points are ideal for @media print CSS rules since they translate directly to physical printed size.
Fixed Layouts: PDF generators and print-to-web applications often use point-based layouts for predictable output.
4. Font Design and Development
Em Square Definition:
- Font designers work within an em square measured in points
- Traditionally 1000 or 2048 units per em square (OpenType fonts)
- Defines the bounding box for all characters
Typeface Specifications:
- X-height: Ratio of lowercase 'x' height to full em square (typically 0.5-0.6)
- Cap height: Uppercase letter height (typically 0.65-0.75 of em square)
- Ascenders/descenders: Extensions above/below baseline
All these proportions maintain their relationships regardless of point size, so a typeface designed with good proportions at 12 pt will remain readable at 8 pt or 72 pt.
5. Publishing and Book Design
Book Industry Standards:
- Fiction novels: 10-12 pt body text, typically Garamond, Baskerville, or Caslon
- Textbooks: 10-11 pt body, 8-9 pt captions/sidebars
- Children's books: 14-18 pt for early readers, larger for picture books
- Academic journals: 10-11 pt Times New Roman or similar serif fonts
Line Spacing (Leading): Traditionally measured in points: 10 pt text with 12 pt leading (written "10/12" and pronounced "ten on twelve") means 10 pt font with 2 pts of extra space between lines.
6. Screen Display and User Interface Design
Operating System Defaults:
- Windows: 96 DPI screen resolution → 12 pt = 16 pixels
- macOS (historical): 72 DPI → 12 pt = 12 pixels (now uses points independently of DPI)
- Retina/HiDPI displays: Points now represent logical pixels rather than physical pixels
Mobile App Guidelines:
- iOS: Uses point as device-independent unit; 1 pt = 1 logical pixel (2-3 physical pixels on Retina)
- Android: Uses density-independent pixels (dp), roughly equivalent to points
Accessibility Standards:
- WCAG 2.1: Recommends minimum 14 pt (18.67 px at 96 DPI) for body text
- Large print: 18 pt or larger considered "large print" for accessibility
7. Technical Drawing and CAD (Limited Use)
While engineering drawings typically use millimeters or inches, annotation text in CAD software (AutoCAD, SolidWorks) is specified in points:
- Drawing notes: 10-12 pt
- Dimension labels: 8-10 pt
- Title blocks: 14-24 pt
This ensures text remains readable when drawings are printed or exported to PDF.
Additional Unit Information
About Micrometer (μm)
Is a micrometer the same as a micron?
Yes, micrometer and micron refer to the same unit: one millionth of a meter (1×10⁻⁶ m or 1 μm). The term "micron" (symbol: μ) was officially used from 1879 to 1967 but was deprecated by the International System of Units (SI) in favor of "micrometer" to maintain consistent naming conventions.
Despite being officially deprecated, "micron" remains common in several industries:
- Semiconductor manufacturing ("5-micron process")
- Filtration ("10-micron filter")
- Materials science (particle size specifications)
In scientific and technical writing, "micrometer" (μm) is the preferred term, but both are universally understood.
How many micrometers are in a millimeter?
There are 1,000 micrometers (μm) in 1 millimeter (mm). This makes sense when you consider the metric prefixes:
- "Milli-" means one thousandth (1/1,000)
- "Micro-" means one millionth (1/1,000,000)
Since a micrometer is 1,000 times smaller than a millimeter, dividing 1 mm into 1,000 equal parts gives you 1 μm per part.
Examples:
- 0.5 mm = 500 μm
- 0.1 mm = 100 μm
- 0.075 mm = 75 μm (typical human hair)
Convert Millimeters to Micrometers →
What are some examples of things measured in micrometers?
Biological:
- Bacteria: 1-10 μm (E. coli ≈ 2 μm)
- Red blood cells: 6-8 μm
- Human hair diameter: 50-100 μm
- Pollen grains: 10-100 μm
Technology:
- Fiber optic core: 8-62.5 μm (depending on type)
- Semiconductor features: 0.01-10 μm (older processes)
- Surface roughness: 0.1-25 μm (machining)
Materials:
- Paint thickness: 25-100 μm
- Plastic wrap: 10-15 μm
- Paper thickness: 70-100 μm
Essentially, anything visible under an optical microscope but invisible to the naked eye is measured in micrometers.
How do I convert micrometers to inches?
To convert micrometers to inches, multiply by 0.00003937 (or divide by 25,400).
Formula: inches = micrometers × 0.00003937
Examples:
- 100 μm × 0.00003937 = 0.003937 inches (≈ 0.004")
- 1,000 μm × 0.00003937 = 0.03937 inches (≈ 0.04")
- 2,540 μm × 0.00003937 = 0.1 inches
For context, 1 inch = 25,400 μm (or 25.4 mm), so micrometers are extremely small when expressed in imperial units.
Convert Micrometers to Inches →
Can the human eye see micrometers?
The human eye's resolution limit is approximately 50-100 micrometers under ideal conditions. This means:
Barely visible (with perfect vision):
- Thick human hair: 100 μm
- Fine sand grains: 100-500 μm
- Large dust particles: 100+ μm
Invisible without magnification:
- Bacteria: 1-10 μm
- Red blood cells: 6-8 μm
- Fine dust: <50 μm
- Most microorganisms: <50 μm
To see objects smaller than ~50 μm, you need a microscope. Optical microscopes can resolve features down to about 0.2 μm (200 nm), while electron microscopes can see structures at the nanometer scale.
What is the difference between micrometer and nanometer?
A micrometer (μm) equals one millionth of a meter (10⁻⁶ m), while a nanometer (nm) equals one billionth of a meter (10⁻⁹ m). This means 1 micrometer = 1,000 nanometers.
Scale comparison:
- Micrometer scale: bacteria, cells, human hair (1-100 μm)
- Nanometer scale: viruses, molecules, atoms (1-100 nm)
Examples:
- Red blood cell: 7,000 nm = 7 μm
- Coronavirus particle: 100 nm = 0.1 μm
- DNA helix width: 2 nm = 0.002 μm
- Silicon atom: 0.2 nm = 0.0002 μm
Optical microscopes work at the micrometer scale, while electron microscopes are needed for nanometer-scale imaging.
Convert Micrometers to Nanometers →
How accurate are micrometer measuring tools?
A micrometer (the measuring instrument, also called a "mike") typically measures with an accuracy of ±0.001 mm (±1 μm) for standard models, and ±0.0001 mm (±0.1 μm) for digital precision models.
Types and accuracy:
- Standard mechanical: ±0.001 mm (±1 μm)
- Vernier micrometer: ±0.001 mm (±1 μm)
- Digital micrometer: ±0.0005-0.001 mm (±0.5-1 μm)
- High-precision digital: ±0.0001 mm (±0.1 μm)
Accuracy depends on:
- Tool quality and calibration
- Temperature (thermal expansion affects readings)
- Operator technique (proper force and reading)
- Workpiece surface condition
For even higher precision, coordinate measuring machines (CMMs) and optical comparators can achieve sub-micrometer accuracy in controlled environments.
Why was "micron" deprecated?
The International System of Units (SI) deprecated "micron" in 1967-1968 to maintain consistent naming conventions across all metric units. The SI system uses standard prefixes (micro-, nano-, kilo-, etc.) combined with base units (meter, gram, second) to create derived units.
Reasons for change:
- Consistency: "Micrometer" follows the pattern of millimeter, nanometer, kilometer
- Clarity: Combines "micro-" (10⁻⁶) with "meter" to clearly indicate the scale
- International standardization: Reduces confusion in scientific communication
- Symbol standardization: μm is unambiguous, while μ alone could be confused with other uses
Why "micron" persists:
- Shorter and easier to say ("micron" vs "micrometer")
- Decades of industry usage before 1967
- Well-established in semiconductor, filtration, and materials industries
- No confusion in context (everyone knows what "10-micron filter" means)
In formal scientific writing, use "micrometer (μm)" for SI compliance.
What equipment measures in micrometers?
Precision measuring instruments:
- Micrometer caliper (the tool): Measures dimensions to ±1 μm accuracy
- Dial indicator: Measures displacement to ±1-5 μm
- Coordinate Measuring Machine (CMM): Sub-micrometer accuracy
- Optical comparator: Projects magnified image for micrometer-scale inspection
- Laser interferometer: Measures to nanometer/sub-micrometer accuracy
Microscopy equipment:
- Optical microscope: With calibrated eyepiece scales (reticles) marked in micrometers
- Confocal microscope: 3D imaging with micrometer resolution
- Scanning Electron Microscope (SEM): Nanometer resolution but calibrated in micrometers
Surface analysis:
- Surface roughness tester (profilometer): Measures Ra, Rz in micrometers
- Thickness gauge: Coating thickness to ±1 μm
- Film thickness measurement: Non-contact optical methods
Quality control:
- Particle size analyzers: Measure suspended particles in micrometers
- Laser diffraction instruments: Characterize powders and emulsions
How is micrometer used in air quality standards?
Air quality standards use micrometers to classify particulate matter (PM) by size, which determines health impacts:
PM10 (Particulate Matter <10 μm):
- Includes dust, pollen, mold
- Can reach lungs but often trapped in nose/throat
- EPA 24-hour standard: 150 μg/m³
PM2.5 (Particulate Matter <2.5 μm):
- Includes combustion particles, smoke, fine dust
- Small enough to enter deep into lungs and bloodstream
- EPA 24-hour standard: 35 μg/m³
- More dangerous than PM10 due to deep lung penetration
Why size matters:
- >10 μm: Trapped in nose and throat
- 2.5-10 μm: Can reach upper respiratory tract and lungs
- <2.5 μm: Can penetrate deep into lungs and enter bloodstream
- <0.1 μm (ultrafine): Can cross into organs and brain
Filter effectiveness:
- HEPA filters: Capture 99.97% of particles ≥0.3 μm
- N95 masks: Filter 95% of particles ≥0.3 μm
- Standard HVAC filters: Typically 3-10 μm particle capture
Understanding micrometer-scale particle sizes is critical for respiratory health, especially for vulnerable populations.
Convert Air Quality Measurements →
About Point (Typography) (pt)
How many points are in an inch?
Exactly 72 points (pt) = 1 inch (in) in the modern DTP point system used by all contemporary software. This creates simple conversions:
- 36 pt = 0.5 inches (half inch)
- 18 pt = 0.25 inches (quarter inch)
- 144 pt = 2 inches
Historically, European Didot points (≈67.55 per inch) and American pica points (≈72.27 per inch) used slightly different ratios, but these are obsolete in modern typography.
What is the difference between a point and a pixel?
Points are physical length units (1/72 inch), used for print and when physical size matters. Pixels are device-dependent digital display units whose physical size varies by screen resolution:
- On 96 DPI screens (Windows/web standard): 1 pt = 1.333 pixels
- On 72 DPI screens (old Mac standard): 1 pt = 1 pixel
- On Retina/HiDPI displays: 1 pt = 2-4 physical pixels (but still 1.333 "logical" pixels)
Use points for print design where physical dimensions matter. Use pixels or ems for responsive web design where consistency across devices matters more than absolute size.
What does 12 pt font mean?
12 pt font means the font's em square (the invisible bounding box containing the letters plus spacing) is 12 points (1/6 inch or 4.23 mm) tall. This includes:
- Ascenders: Parts above the baseline (tops of 'h', 'b', 'd')
- Descenders: Parts below the baseline (tails of 'g', 'y', 'p')
- Built-in spacing: Extra vertical room above and below
The actual visible letter height (called x-height for lowercase or cap height for capitals) is typically 60-70% of the point size. So 12 pt text has capital letters around 8-9 points (0.11-0.125 inches) tall, with the remaining space used for descenders and line spacing.
Why are there exactly 72 points in an inch?
Adobe Systems chose 72 because it's highly divisible: 72 = 2³ × 3² = 8 × 9, with factors including 2, 3, 4, 6, 8, 9, 12, 18, 24, 36. This makes common fractions simple:
- 1/2 inch = 36 pt
- 1/3 inch = 24 pt
- 1/4 inch = 18 pt
- 1/6 inch = 12 pt (standard body text)
- 1/8 inch = 9 pt
Additionally, early Macintosh screens used 72 DPI (dots per inch), making 1 point = 1 pixel—perfect for WYSIWYG ("what you see is what you get") design. Text appeared onscreen at its exact printed size.
Historically, Pierre Simon Fournier's 1737 system also used 72 points/inch for the same mathematical convenience, though his "inch" was the French royal inch, slightly different from today's international inch.
What's the difference between points and picas?
Points and picas are related typographic units:
- 1 pica = 12 points
- 6 picas = 72 points = 1 inch
- 1 pica = 1/6 inch ≈ 4.233 mm
Points are used for font sizes and small measurements (12 pt text, 2 pt line thickness). Picas are used for larger layout dimensions (column widths, page margins, grid spacing).
Example: A newspaper column might be "12 picas wide" (2 inches / 144 points) with "9 pt body text" and "1 pica margins" (12 points / 1/6 inch).
Both units are part of the same measurement system and convert simply (multiply or divide by 12), making calculations easy while providing appropriately-scaled units for different design elements.
How do I convert points to millimeters?
Formula: millimeters = points × 0.352777... (exact value: 25.4 / 72)
Simplified: millimeters ≈ points × 0.353 (accurate within 0.01%)
Quick conversions:
- 10 pt = 3.53 mm
- 12 pt = 4.23 mm
- 14 pt = 4.94 mm
- 18 pt = 6.35 mm
- 24 pt = 8.47 mm
- 72 pt = 25.4 mm (exactly 1 inch)
Reverse conversion (millimeters to points): points = millimeters × 2.834645... ≈ millimeters × 2.835
Example: A European specification requires "4 mm text." You need: 4 mm × 2.835 ≈ 11.34 pt (round to 11 pt or 11.5 pt).
Is 12 pt the same size in Word and Photoshop?
Yes, exactly. All modern software—Microsoft Word, Adobe Photoshop, InDesign, Illustrator, Google Docs, Apple Pages—uses the same DTP point definition (1/72 inch). 12 pt text will measure exactly 1/6 inch (4.23 mm) when printed from any of these applications.
However, onscreen appearance may differ slightly due to:
- Font rendering differences: Windows ClearType vs. Mac font smoothing displays the same physical size slightly differently
- Screen zoom levels: If Word is zoomed to 150%, text appears larger on screen but still prints at correct physical size
- Different default fonts: Word's default Calibri looks different from Photoshop's default Arial, even at the same point size
But when measured with a ruler on printed output, 12 pt is always exactly 1/6 inch across all applications.
Why doesn't my 12 pt text look 12 points tall on screen?
Your screen zoom level affects apparent size, but the text will still print at correct physical dimensions:
- 100% zoom: 12 pt text appears at approximately true physical size (depending on monitor size and resolution)
- 200% zoom: 12 pt text appears twice as large on screen but still prints at 1/6 inch (4.23 mm)
- 50% zoom: Text appears half-size on screen but prints correctly
Most word processors and design software show the current zoom level in the bottom toolbar. Page view at 100% zoom usually displays content close to actual print size, though this depends on your monitor's physical dimensions and resolution.
To verify true size, print a test page and measure with a ruler: 12 pt text should measure exactly 0.167 inches or 4.23 mm from the top of the tallest letter to the bottom of descenders.
What's the best point size for body text?
10-12 pt is the standard range for printed body text, with specific recommendations depending on context:
Printed Documents:
- 10 pt: Acceptable minimum; used for dense content (textbooks, references)
- 11 pt: Comfortable reading size for most book typography
- 12 pt: Default in Microsoft Word; universally acceptable for any document
Digital/Screen Display:
- 12-16 pt (or 16-21 pixels at 96 DPI): More comfortable for extended screen reading due to backlit display eye strain
- 14-18 pt: Recommended for accessibility and readers with vision impairments
Factors affecting choice:
- Font design: Fonts with larger x-height (like Verdana) are readable at smaller sizes than fonts with small x-height (like Garamond)
- Line length: Longer lines benefit from larger text (12+ pt)
- Reader age: Older audiences benefit from 12-14 pt minimum
- Reading distance: Presentations and signage require much larger text (18+ pt)
When in doubt, 12 pt is the safe, professional standard for nearly all applications.
Can I use points for web design?
Yes, but it's discouraged for screen-only designs. Here's why:
Points in CSS:
CSS supports the pt unit (1/72 inch), but it's primarily useful for print stylesheets:
@media print {
body { font-size: 11pt; } /* Predictable printed size */
h1 { font-size: 18pt; }
}
Why not for screen:
- Not responsive: Points are absolute units, don't scale with user preferences or viewport size
- Accessibility issues: Users who increase browser font size won't affect point-sized text
- Device variations: Different pixel densities make points appear inconsistent across devices
Better alternatives for screen:
- Relative units (
em,rem): Scale with user preferences - Pixels (
px): Precise control with media queries - Viewport units (
vw,vh): Scale with screen size
Best practice: Use pixels or rems for screen, points for print stylesheets.
What is leading and how does it relate to points?
Leading (pronounced "led-ing") is the vertical space between lines of text, measured in points from baseline to baseline. The term comes from traditional typesetting, where thin strips of lead metal were inserted between lines of type.
Standard leading conventions:
- Solid leading: Leading = font size (10 pt text with 10 pt leading = "10/10")
- Lines touch; rarely used except for display type
- Normal leading: Leading = 120% of font size (10 pt text with 12 pt leading = "10/12")
- Default in most word processors
- Comfortable reading with adequate space
- Loose leading: Leading = 140-160% of font size (10 pt text with 14-16 pt leading = "10/14" or "10/16")
- Airy, easy to read
- Used for accessibility, children's books
Example: 12 pt text with 14.4 pt leading means:
- Font size: 12 points (1/6 inch)
- Space from baseline to baseline: 14.4 points (0.2 inches)
- Extra space between lines: 2.4 points (0.033 inches)
Too-tight leading makes text hard to read (lines blur together). Too-loose leading creates disconnected "rivers" of white space.
Do fonts actually differ in "12 pt" size?
Yes and no. All 12 pt fonts have the same em square (the bounding box), but they can look very different sizes due to:
X-height variation:
- High x-height fonts (Verdana, Arial): Lowercase letters occupy 50-60% of em square → appear larger
- Low x-height fonts (Garamond, Bodoni): Lowercase letters occupy 40-50% of em square → appear smaller
Example:
- 12 pt Verdana: Lowercase 'x' is about 6-7 points tall (very readable)
- 12 pt Garamond: Lowercase 'x' is about 5-6 points tall (more elegant but smaller)
Both fonts have the same 12 pt em square, but Verdana allocates more of that space to letter height and less to descenders/ascenders, making it appear larger.
Practical implication: When switching fonts in a document, you may need to adjust point size to maintain similar apparent size. Replacing 12 pt Garamond with 12 pt Verdana might look too large; 11 pt Verdana may better match the original appearance.
This is why typographers often specify fonts and sizes together: "11 pt Garamond" and "10 pt Verdana" can provide similar readability despite different nominal sizes.
Conversion Table: Micrometer to Point (Typography)
| Micrometer (μm) | Point (Typography) (pt) |
|---|---|
| 0.5 | 0.001 |
| 1 | 0.003 |
| 1.5 | 0.004 |
| 2 | 0.006 |
| 5 | 0.014 |
| 10 | 0.028 |
| 25 | 0.071 |
| 50 | 0.142 |
| 100 | 0.284 |
| 250 | 0.709 |
| 500 | 1.417 |
| 1,000 | 2.835 |
People Also Ask
How do I convert Micrometer to Point (Typography)?
To convert Micrometer to Point (Typography), enter the value in Micrometer in the calculator above. The conversion will happen automatically. Use our free online converter for instant and accurate results. You can also visit our length converter page to convert between other units in this category.
Learn more →What is the conversion factor from Micrometer to Point (Typography)?
The conversion factor depends on the specific relationship between Micrometer and Point (Typography). You can find the exact conversion formula and factor on this page. Our calculator handles all calculations automatically. See the conversion table above for common values.
Can I convert Point (Typography) back to Micrometer?
Yes! You can easily convert Point (Typography) back to Micrometer by using the swap button (⇌) in the calculator above, or by visiting our Point (Typography) to Micrometer converter page. You can also explore other length conversions on our category page.
Learn more →What are common uses for Micrometer and Point (Typography)?
Micrometer and Point (Typography) are both standard units used in length measurements. They are commonly used in various applications including engineering, construction, cooking, and scientific research. Browse our length converter for more conversion options.
For more length conversion questions, visit our FAQ page or explore our conversion guides.
Helpful Conversion Guides
Learn more about unit conversion with our comprehensive guides:
📚 How to Convert Units
Step-by-step guide to unit conversion with practical examples.
🔢 Conversion Formulas
Essential formulas for length and other conversions.
⚖️ Metric vs Imperial
Understand the differences between measurement systems.
⚠️ Common Mistakes
Learn about frequent errors and how to avoid them.
All Length Conversions
Other Length Units and Conversions
Explore other length units and their conversion options:
- Meter (m) • Micrometer to Meter
- Kilometer (km) • Micrometer to Kilometer
- Hectometer (hm) • Micrometer to Hectometer
- Decimeter (dm) • Micrometer to Decimeter
- Centimeter (cm) • Micrometer to Centimeter
- Millimeter (mm) • Micrometer to Millimeter
- Inch (in) • Micrometer to Inch
- Foot (ft) • Micrometer to Foot
- Yard (yd) • Micrometer to Yard
- Mile (mi) • Micrometer to Mile
Verified Against Authority Standards
All conversion formulas have been verified against international standards and authoritative sources to ensure maximum accuracy and reliability.
National Institute of Standards and Technology — Official US standards for length measurements
Bureau International des Poids et Mesures — International System of Units official documentation
Last verified: December 3, 2025