Technical Atmosphere to Megapascal Converter
Convert technical atmospheres to megapascals with our free online pressure converter.
Quick Answer
1 Technical Atmosphere = 0.098067 megapascals
Formula: Technical Atmosphere Γ conversion factor = Megapascal
Use the calculator below for instant, accurate conversions.
Our Accuracy Guarantee
All conversion formulas on UnitsConverter.io have been verified against NIST (National Institute of Standards and Technology) guidelines and international SI standards. Our calculations are accurate to 10 decimal places for standard conversions and use arbitrary precision arithmetic for astronomical units.
Technical Atmosphere to Megapascal Calculator
How to Use the Technical Atmosphere to Megapascal Calculator:
- Enter the value you want to convert in the 'From' field (Technical Atmosphere).
- The converted value in Megapascal will appear automatically in the 'To' field.
- Use the dropdown menus to select different units within the Pressure category.
- Click the swap button (β) to reverse the conversion direction.
How to Convert Technical Atmosphere to Megapascal: Step-by-Step Guide
Converting Technical Atmosphere to Megapascal involves multiplying the value by a specific conversion factor, as shown in the formula below.
Formula:
MPa = at Γ 0.0980665Example Calculation:
1 at = 0.098067 MPa
Disclaimer: For Reference Only
These conversion results are provided for informational purposes only. While we strive for accuracy, we make no guarantees regarding the precision of these results, especially for conversions involving extremely large or small numbers which may be subject to the inherent limitations of standard computer floating-point arithmetic.
Not for professional use. Results should be verified before use in any critical application. View our Terms of Service for more information.
Need to convert to other pressure units?
View all Pressure conversions βWhat is a Technical Atmosphere and a Megapascal?
1 at = 1 kgf/cmΒ² = 98,066.5 Pa = 98.07 kPa = 0.9807 bar = 0.968 atm = 14.223 PSI = 735.6 mmHg
Symbol: at (from German "technische AtmosphΓ€re")
Also written as: kgf/cmΒ², kg/cmΒ², technical atmosphere, metric atmosphere (not standard atmosphere!)
Physical meaning: Pressure exerted by 1 kilogram-force over 1 square centimeter
1 MPa = 1,000,000 Pa = 1,000 kPa = 145.038 PSI = 10 bar = 9.869 atm
Why Megapascal?
MPa is the "sweet spot" for engineering pressures:
- Pascal is too small: 1 Pa = barely measurable (atmospheric is 101,325 Pa)
- Kilopascal is too granular: Engineering specs in kPa are 4-5 digit numbers (20,000 kPa for concrete)
- MPa is optimal: Concrete 20-40 MPa (simple, memorable)
- Engineering standard: All material specs given in MPa
- SI-derived: ISO and international standards use MPa
Note: The Technical Atmosphere is part of the imperial/US customary system, primarily used in the US, UK, and Canada for everyday measurements. The Megapascal belongs to the imperial/US customary system.
Common Uses and Applications: technical atmospheres vs megapascals
Explore the typical applications for both Technical Atmosphere (imperial/US) and Megapascal (imperial/US) to understand their common contexts.
Common Uses for technical atmospheres
Historical: European engineering (Germany, Austria, Switzerland) pre-1980s. Current: Some Asian countries (China, Russia, Japan) still use occasionally. Older Equipment: Pressure gauges, hydraulic systems from mid-1900s. Legacy Specs: Old engineering drawings, technical manuals.
When to Use megapascals
Materials Engineering: Tensile strength, compressive strength, yield strength - THE standard unit for all material properties. Hydraulics: High-pressure hydraulic systems (construction, manufacturing, heavy equipment). Pressure Vessels: Gas cylinders, boilers, reactors, automotive fuel systems. Geotechnical: Soil bearing capacity, rock strength, foundation design. Aerospace: Structural requirements, component ratings.
Material Strengths (Compressive/Tensile)
Understanding material strength is critical for engineering design:
| Material | Type | Strength (MPa) | Notes | |---|---|---|---| | Styrofoam | Compression | 0.01-0.1 | Very weak, insulation only | | Wood (softwood) | Compression | 20-40 | Pine, spruce, fir typical | | Wood (hardwood) | Compression | 40-60 | Oak, maple stronger | | Brick | Compression | 10-40 | Varies by firing temperature | | Concrete (standard) | Compression | 20-40 | Common 28-day strength | | Concrete (high-strength) | Compression | 50-100 | Pre-stressed applications | | Granite | Compression | 100-250 | Very strong, suitable for columns | | Aluminum alloy (6061) | Tensile | 200-300 | Common structural aluminum | | Aluminum alloy (7075) | Tensile | 500-600 | High-strength aerospace | | Steel (structural ASTM A36) | Yield | 250 | Common building steel | | Steel (high-strength ASTM A572) | Yield | 345-450 | Bridge, crane applications | | Steel (ultra-high) | Tensile | 500-1,000 | Special applications | | Steel cable (wire rope) | Tensile | 1,600-2,000 | Elevators, suspension bridges | | Carbon fiber composite | Tensile | 3,000-7,000 | Aerospace, racing | | Kevlar fiber | Tensile | 3,600-3,800 | Armor, protective gear |
Design factor: Actual working stress = material strength Γ· safety factor (typically 2-4)
Hydraulic Systems (High Pressure)
Hydraulic pressure ratings define system capability:
| System Type | Operating Pressure | Peak Pressure | PSI Equivalent | Application | |---|---|---|---|---| | Automotive brake | 10-15 MPa | 20 MPa | 1,500-2,900 PSI | Car braking force | | Automobile power steering | 10-15 MPa | 20 MPa | 1,500-2,900 PSI | Steering assist | | Construction excavator | 20-35 MPa | 40 MPa | 2,900-5,800 PSI | Digging bucket | | Backhoe | 25-30 MPa | 35 MPa | 3,625-5,075 PSI | Heavy lifting | | Dump truck bed | 20-25 MPa | 30 MPa | 2,900-4,350 PSI | Lifting load | | Industrial press | 20-40 MPa | 50 MPa | 2,900-7,250 PSI | Metal forming | | Hydraulic jack | 50-70 MPa | 80 MPa | 7,250-11,600 PSI | Lifting capability | | Water jet cutter | 200-400 MPa | 450 MPa | 29,000-65,000 PSI | Material cutting | | Oil well pump | 100-200 MPa | 250 MPa | 14,500-36,250 PSI | Deep well pressure |
Pressure Vessels & Storage
Pressure ratings determine safe working limits:
| Vessel Type | Typical Pressure | Material | Working PSIG | |---|---|---|---| | Compressed air tank | 0.8-1.0 MPa | Steel | 116-145 PSI | | Propane BBQ tank | 1.5-2.0 MPa | Steel | 218-290 PSI | | Scuba tank (full) | 20-30 MPa | Aluminum/Steel | 3,000-4,350 PSI | | Natural gas vehicle | 20-25 MPa | Composite | 3,000-3,625 PSI | | Hydrogen fuel cell | 35-70 MPa | Carbon fiber | 5,000-10,000 PSI | | Industrial gas cylinder | 15-20 MPa | Steel | 2,175-2,900 PSI | | Medical oxygen | 13.8-15 MPa | Aluminum | 2,000-2,175 PSI | | Nitrogen (instrument) | 10-13.8 MPa | Steel | 1,450-2,000 PSI |
Safety factor: Pressure vessels typically designed with 4:1 to 6:1 safety margin
Geotechnical Engineering (Soil/Rock)
Foundation and excavation design based on pressure ratings:
| Material/Condition | Bearing Capacity | Suitable For | Notes | |---|---|---|---| | Soft clay | 0.05-0.2 MPa | Temporary structures | High settlement risk | | Medium clay | 0.1-0.3 MPa | Single story | Careful design needed | | Stiff clay | 0.3-0.5 MPa | Multi-story buildings | Good load capacity | | Dense sand | 0.3-0.6 MPa | Foundation base | Excellent for building | | Gravel/sand mixture | 0.6-1.0 MPa | Heavy structures | Very good bearing | | Soft rock (shale) | 1-10 MPa | Bridge supports | Rock analysis needed | | Medium rock | 10-50 MPa | Tall buildings | High capacity | | Hard rock (granite) | 50-100+ MPa | Largest structures | Excellent foundation |
Design process: Site investigation β soil tests β pressure capacity β foundation design
Additional Unit Information
About Technical Atmosphere (at)
What is the difference between "at" and "atm"?
Different units! (Common source of confusion)
at (technical atmosphere):
- 1 at = 1 kgf/cmΒ² = 98,066.5 Pa
- Engineering unit based on kilogram-force
- Symbol: at
- Historical European engineering
atm (standard atmosphere):
- 1 atm = 101,325 Pa (exactly, by definition)
- Based on sea-level atmospheric pressure
- Symbol: atm
- Scientific/meteorological standard
Relationship: 1 atm = 1.033 at (about 3% higher)
Why confusion?: Names sound similar, values close (both β atmospheric pressure)
Technical Atmosphere to Atmosphere converter β
How do I convert at to bar?
Formula: bar = at Γ 0.980665
Quick approximation: 1 at β 1 bar (1.9% difference)
Exact conversions:
- 1 at = 0.981 bar
- 2 at = 1.961 bar
- 5 at = 4.903 bar
- 10 at = 9.807 bar
- 100 at = 98.07 bar
Inverse: 1 bar = 1.0197 at
Why so close?: Bar defined (originally) to be close to atmospheric pressure, similar motivation as technical atmosphere
How do I convert at to PSI?
Formula: PSI = at Γ 14.2233
Examples:
- 1 at = 14.22 PSI
- 2 at = 28.45 PSI
- 5 at = 71.12 PSI (typical air compressor)
- 10 at = 142.23 PSI
- 100 at = 1,422.33 PSI (high pressure)
Inverse: 1 PSI = 0.0703 at
Memory aid: 1 at β 14 PSI
How do I convert at to kPa or MPa?
Formula: kPa = at Γ 98.0665
Examples:
- 1 at = 98.07 kPa β 0.1 MPa
- 5 at = 490.3 kPa β 0.5 MPa
- 10 at = 980.7 kPa β 1 MPa
- 50 at = 4,903 kPa β 5 MPa
- 100 at = 9,807 kPa β 10 MPa
Quick rule: Multiply by ~100 to get kPa, divide by ~10 to get MPa
at to kPa converter β at to MPa converter β
Why is this unit not used anymore?
SI adoption (1970s-1980s): Most countries transitioned to SI units (Pa, kPa, MPa, bar)
Problems with technical atmosphere:
- Not SI-compliant: Based on kilogram-force (gravitational unit)
- Ambiguity: "kg" is mass, not force (kgf needed for clarity)
- Gravity dependence: Assumes standard gravity (9.80665 m/sΒ²)
- Confusion: Easy to confuse with standard atmosphere (atm)
Modern replacements:
- Bar: 1 at β 1 bar (easy conversion)
- kPa: 1 at β 100 kPa
- MPa: For high pressures (1 at = 0.1 MPa)
Still seen in:
- Older European equipment specifications
- Chinese industrial standards (some applications)
- Russian/former Soviet engineering documents
- Japanese industrial equipment (occasionally)
- Legacy pressure gauges and instruments
For new designs: Use bar, kPa, or MPa instead of at
Historical importance: Was convenient unit when bar not yet standardized, and provided easy mental approximation to atmospheric pressure.
About Megapascal (MPa)
How do I convert MPa to PSI?
Formula: PSI = MPa Γ 145.038
Examples:
- 1 MPa = 145 PSI
- 10 MPa = 1,450 PSI (car brakes)
- 20 MPa = 2,900 PSI (hydraulic tools)
- 30 MPa = 4,350 PSI (scuba tank)
- 70 MPa = 10,153 PSI (H2 fuel tank)
What is concrete strength in MPa?
Residential concrete: 20-32 MPa (2,900-4,650 PSI)
- Footings/slabs: 20-25 MPa
- Foundation walls: 25-30 MPa
- Driveway: 25-32 MPa
Commercial concrete: 30-50 MPa
- Floors: 30-35 MPa
- Beams/columns: 35-50 MPa
High-strength: 50-100+ MPa
- High-rise buildings: 50-80 MPa
- Bridges: 60-100 MPa
- Special applications: 100-150 MPa
Conversion: Divide PSI by 145 to get MPa (e.g., 3,000 PSI β 21 MPa)
How do I convert MPa to bar?
Formula: bar = MPa Γ 10
Examples:
- 0.1 MPa = 1 bar
- 1 MPa = 10 bar
- 2 MPa = 20 bar
- 10 MPa = 100 bar
- 20 MPa = 200 bar (scuba tank)
What is a typical hydraulic system pressure?
Low pressure: 7-14 MPa (1,000-2,000 PSI)
- Automotive power steering: 8-12 MPa
- Light hydraulic lifts: 7-10 MPa
Medium pressure: 14-21 MPa (2,000-3,000 PSI)
- Construction equipment: 20-25 MPa
- Agricultural machinery: 14-20 MPa
- Automotive brakes: 10-15 MPa
High pressure: 21-35 MPa (3,000-5,000 PSI)
- Industrial presses: 25-35 MPa
- Heavy construction: 30-35 MPa
- Excavators: 30-35 MPa
Very high pressure: >35 MPa (>5,000 PSI)
- Hydraulic jacks: 50-70 MPa
- Specialized industrial: 70-100 MPa
Why use MPa instead of PSI for material strength?
SI standard: International engineering uses MPa universally Simpler numbers: 400 MPa vs 58,000 PSI Scientific: Consistent with stress calculations (force/area in N/mΒ²) Global: Specifications understood worldwide
Conversion: PSI Γ· 145 β MPa (or PSI Γ 0.00689 = MPa)
Example: Steel yield strength
- As MPa: 250-400 MPa (easy)
- As PSI: 36,000-58,000 PSI (unwieldy)
Conversion Table: Technical Atmosphere to Megapascal
| Technical Atmosphere (at) | Megapascal (MPa) |
|---|---|
| 0.5 | 0.049 |
| 1 | 0.098 |
| 1.5 | 0.147 |
| 2 | 0.196 |
| 5 | 0.49 |
| 10 | 0.981 |
| 25 | 2.452 |
| 50 | 4.903 |
| 100 | 9.807 |
| 250 | 24.517 |
| 500 | 49.033 |
| 1,000 | 98.067 |
People Also Ask
How do I convert Technical Atmosphere to Megapascal?
To convert Technical Atmosphere to Megapascal, enter the value in Technical Atmosphere in the calculator above. The conversion will happen automatically. Use our free online converter for instant and accurate results. You can also visit our pressure converter page to convert between other units in this category.
Learn more βWhat is the conversion factor from Technical Atmosphere to Megapascal?
The conversion factor depends on the specific relationship between Technical Atmosphere and Megapascal. You can find the exact conversion formula and factor on this page. Our calculator handles all calculations automatically. See the conversion table above for common values.
Can I convert Megapascal back to Technical Atmosphere?
Yes! You can easily convert Megapascal back to Technical Atmosphere by using the swap button (β) in the calculator above, or by visiting our Megapascal to Technical Atmosphere converter page. You can also explore other pressure conversions on our category page.
Learn more βWhat are common uses for Technical Atmosphere and Megapascal?
Technical Atmosphere and Megapascal are both standard units used in pressure measurements. They are commonly used in various applications including engineering, construction, cooking, and scientific research. Browse our pressure converter for more conversion options.
For more pressure conversion questions, visit our FAQ page or explore our conversion guides.
Helpful Conversion Guides
Learn more about unit conversion with our comprehensive guides:
π How to Convert Units
Step-by-step guide to unit conversion with practical examples.
π’ Conversion Formulas
Essential formulas for pressure and other conversions.
βοΈ Metric vs Imperial
Understand the differences between measurement systems.
β οΈ Common Mistakes
Learn about frequent errors and how to avoid them.
All Pressure Conversions
Other Pressure Units and Conversions
Explore other pressure units and their conversion options:
- Pascal (Pa) β’ Technical Atmosphere to Pascal
- Kilopascal (kPa) β’ Technical Atmosphere to Kilopascal
- Hectopascal (hPa) β’ Technical Atmosphere to Hectopascal
- Bar (bar) β’ Technical Atmosphere to Bar
- Millibar (mbar) β’ Technical Atmosphere to Millibar
- Atmosphere (atm) β’ Technical Atmosphere to Atmosphere
- Torr (Torr) β’ Technical Atmosphere to Torr
- Millimeter of Mercury (mmHg) β’ Technical Atmosphere to Millimeter of Mercury
- Inch of Mercury (inHg) β’ Technical Atmosphere to Inch of Mercury
- Pound per Square Inch (psi) β’ Technical Atmosphere to Pound per Square Inch
Verified Against Authority Standards
All conversion formulas have been verified against international standards and authoritative sources to ensure maximum accuracy and reliability.
National Institute of Standards and Technology β Fundamental physical constants and unit conversions
Bureau International des Poids et Mesures β International System of Units (SI) definitions and standards
International Organization for Standardization β Quantities and units international standards series
Last verified: February 19, 2026