Day to Minute Converter

Convert days to minutes with our free online time converter.

Quick Answer

1 Day = 1440 minutes

Formula: Day × conversion factor = Minute

Use the calculator below for instant, accurate conversions.

Our Accuracy Guarantee

All conversion formulas on UnitsConverter.io have been verified against NIST (National Institute of Standards and Technology) guidelines and international SI standards. Our calculations are accurate to 10 decimal places for standard conversions and use arbitrary precision arithmetic for astronomical units.

Last verified: December 2025Reviewed by: Sam Mathew, Software Engineer

Day to Minute Calculator

How to Use the Day to Minute Calculator:

  1. Enter the value you want to convert in the 'From' field (Day).
  2. The converted value in Minute will appear automatically in the 'To' field.
  3. Use the dropdown menus to select different units within the Time category.
  4. Click the swap button (⇌) to reverse the conversion direction.
Share:

How to Convert Day to Minute: Step-by-Step Guide

Converting Day to Minute involves multiplying the value by a specific conversion factor, as shown in the formula below.

Formula:

1 Day = 1440 minutes

Example Calculation:

Convert 60 days: 60 × 1440 = 8.6400e+4 minutes

Disclaimer: For Reference Only

These conversion results are provided for informational purposes only. While we strive for accuracy, we make no guarantees regarding the precision of these results, especially for conversions involving extremely large or small numbers which may be subject to the inherent limitations of standard computer floating-point arithmetic.

Not for professional use. Results should be verified before use in any critical application. View our Terms of Service for more information.

What is a Day and a Minute?

The day (symbol: d) is a unit of time equal to 24 hours, 1,440 minutes, or 86,400 seconds.

Official civil definition: Since 1967, one day is defined as exactly 86,400 SI seconds, where each second equals 9,192,631,770 periods of caesium-133 radiation. Therefore:

  • 1 day = 86,400 × 9,192,631,770 = 793,927,920,332,800,000 caesium-133 oscillations
  • This equals approximately 794 quadrillion atomic oscillations

Astronomical definitions:

  1. Solar day (apparent solar day):

    • Time between two successive transits of the Sun across the local meridian (noon to noon)
    • Varies throughout year: ±16 minutes due to Earth's elliptical orbit and axial tilt
    • Mean solar day: Average of all solar days = 24 hours exactly (86,400 seconds)
    • This is the basis for civil timekeeping
  2. Sidereal day:

    • Time for Earth to rotate 360° relative to distant stars
    • 23 hours, 56 minutes, 4.09 seconds (86,164.09 seconds)
    • ~4 minutes shorter than solar day
    • Used in astronomy for telescope tracking and star charts
  3. Synodic day (planetary science):

    • Time for same position of sun in sky on other planets
    • Mars sol: 24 hours, 39 minutes, 35 seconds
    • Venus day: 116.75 Earth days (very slow rotation)

Why the difference?

  • Earth rotates 360° in one sidereal day
  • But Earth also orbits the Sun (~1° per day along orbit)
  • Must rotate an additional ~1° (4 minutes) for sun to return to same position
  • Result: Solar day = sidereal day + ~4 minutes
  • Over one year: 365 solar days, but 366 sidereal days (one extra rotation)

The minute (symbol: min) is a unit of time equal to 60 seconds or 1/60 of an hour (exactly 0.016̄ hours, or approximately 0.0167 hours).

Official SI-derived definition: Since the second was redefined atomically in 1967, one minute equals exactly 60 seconds, where each second is the duration of 9,192,631,770 periods of radiation from caesium-133 atoms. Therefore:

  • 1 minute = 60 × 9,192,631,770 = 551,558,906,200 caesium-133 oscillations

Practical conversions:

  • 1 minute = 60 seconds (exact)
  • 1 minute = 0.016666... hours (1/60 hr, exact)
  • 1 hour = 60 minutes (exact)
  • 1 day = 1,440 minutes (24 × 60)
  • 1 week = 10,080 minutes (7 × 24 × 60)
  • 1 year (365 days) = 525,600 minutes (memorably featured in the musical Rent)

The minute is not an SI base unit, but it is accepted for use with the SI alongside hours, days, and other traditional time units due to its universal cultural importance and practical utility.

Why 60?

The choice of 60 comes from ancient Babylonian sexagesimal (base-60) mathematics, developed around 3000 BCE. The Babylonians chose 60 because it's highly divisible:

  • Factors of 60: 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60 (12 factors!)
  • This makes fractions like 1/2 (30 min), 1/3 (20 min), 1/4 (15 min), 1/5 (12 min), 1/6 (10 min) all whole numbers
  • Contrast with decimal: 100 only has factors 1, 2, 4, 5, 10, 20, 25, 50, 100 (9 factors, and divisions like 1/3 = 33.33...)

This mathematical convenience made base-60 ideal for astronomy, geometry, and timekeeping—fields requiring frequent division. The system persists today in our 60-minute hours, 60-second minutes, and 360-degree circles (6 × 60).

Note: The Day is part of the imperial/US customary system, primarily used in the US, UK, and Canada for everyday measurements. The Minute belongs to the imperial/US customary system.

History of the Day and Minute

of the Day

Prehistoric Recognition (Before 3000 BCE)

The day-night cycle is the most fundamental observable pattern in nature, recognized by all human cultures and even animals:

Biological origins:

  • Circadian rhythms: Internal ~24-hour biological clock evolved in response to Earth's rotation
  • Found in bacteria, plants, animals, humans
  • Regulated by light/dark cycle
  • Predates human civilization by billions of years

Early human observation:

  • Stone Age: Organized activities by sun position (hunting at dawn, gathering by day)
  • Neolithic era: Agricultural cycles tied to day length (planting, harvesting)
  • Megalithic monuments: Stonehenge (c. 3000 BCE) aligned with solstice sunrise
  • Earliest "clocks": Shadows cast by objects (proto-sundials)

Ancient Egyptian Timekeeping (c. 3000 BCE)

Egyptians formalized day measurement:

  1. Shadow clocks and sundials (c. 1500 BCE):

    • Obelisks cast shadows indicating time of day
    • Divided daylight into 12 parts (seasonal hours)
    • Used horizontal bars with markings
  2. Water clocks (clepsydrae):

    • Used at night when sundials didn't work
    • Water dripped at constant rate through calibrated container
    • Divided night into 12 parts
  3. Decans (star clocks):

    • 36 groups of stars rising throughout year
    • Each decan rose ~40 minutes apart
    • Used to tell time at night

Egyptian day structure:

  • Day began at sunrise (variable time)
  • 12 hours daylight + 12 hours darkness = 24 hours
  • But "hours" varied by season (longer daytime hours in summer)

Babylonian Contributions (c. 2000 BCE)

Babylonians established key concepts:

  1. Seven-day week:

    • Based on seven visible celestial bodies (Sun, Moon, Mercury, Venus, Mars, Jupiter, Saturn)
    • Each day named after a planet/god
    • This system spread globally
  2. Day began at sunset:

    • Still used in Hebrew and Islamic calendars
    • Genesis 1:5: "And there was evening, and there was morning—the first day"
  3. Base-60 mathematics:

    • Eventually led to 24 hours, 60 minutes, 60 seconds
    • 360° circle (from ~360 days in year)

Greek and Roman Systems (500 BCE - 400 CE)

Greek astronomers:

  • Hipparchus (c. 150 BCE): Studied equation of time (variation in solar day length)
  • Recognized need for "mean solar day" as average

Roman timekeeping:

  • Day began at midnight (adopted by modern civil timekeeping)
  • Divided into:
    • Dies (daytime): Sunrise to sunset, 12 horae (hours)
    • Nox (nighttime): Sunset to sunrise, 4 vigiliae (watches) of ~3 hours each
  • Market day cycle: Nundinae (8-day week, superseded by 7-day week)

Roman calendar influence:

  • Julian Calendar (45 BCE): 365.25-day year, leap years
  • Day names from planets (still used): Sunday (Sun), Monday (Moon), Saturday (Saturn)

Medieval and Islamic Developments (600-1300 CE)

Islamic timekeeping:

  • Day begins at sunset (following Hebrew tradition)
  • Five daily prayers (salat) structured the day:
    • Fajr (dawn), Dhuhr (noon), Asr (afternoon), Maghrib (sunset), Isha (night)
  • Sophisticated astronomical tables calculated prayer times
  • "Islamic day" vs. "civil day" distinction in Muslim countries

Medieval Christian hours:

  • Canonical hours: Structured monastic life
    • Matins (midnight), Lauds (dawn), Prime (6 AM), Terce (9 AM)
    • Sext (noon), None (3 PM), Vespers (sunset), Compline (bedtime)
  • Church bells marked these hours, organizing community life

Mechanical Clocks and Equal Hours (1300s)

Transformation of daily time:

Before mechanical clocks:

  • "Hours" varied by season
  • Time was task-oriented ("work until sunset")
  • Imprecise coordination

After mechanical clocks (1300s-1400s):

  • 24 equal hours became standard
  • Clocks tick at constant rate regardless of season
  • "Clock time" replaced "sun time" for daily schedules
  • Enabled precise coordination of activities

Social impact:

  • Time discipline: Workers expected at specific times
  • Urban life required synchronization
  • "Punctuality" became a virtue
  • Transition from natural rhythms to mechanical rhythms

Scientific Definition (1800s)

Astronomical measurement:

  • 1832: Second officially defined as 1/86,400 of mean solar day
  • Astronomers recognized Earth's rotation not perfectly uniform
  • Tidal friction slowly increases day length (~1.7 milliseconds per century)

Problem discovered:

  • Earth's rotation varies:
    • Seasonal variations (atmosphere, ice melt)
    • Long-term slowing (tidal friction from Moon)
    • Irregular variations (core-mantle coupling, earthquakes)
  • "Day" based on Earth rotation became unreliable time standard

Atomic Era: Day Decoupled from Rotation (1967)

Atomic second (1967):

  • Second redefined based on caesium-133 atomic transitions
  • Day remains 86,400 seconds (by definition)
  • But now independent of Earth's actual rotation period

Consequence: Leap seconds

  • Earth's rotation gradually slowing
  • Atomic time (TAI) and Earth rotation time (UT1) drift apart
  • Leap seconds added to keep them synchronized:
    • 27 leap seconds added between 1972-2016
    • Last one: December 31, 2016 (23:59:60)
    • Makes that day 86,401 seconds long
  • Controversy: May abolish leap seconds in favor of "leap hours" every few centuries

Current system:

  • UTC (Coordinated Universal Time): Atomic time with leap seconds
  • Keeps within 0.9 seconds of Earth rotation (UT1)
  • Used for civil timekeeping worldwide

Calendar Evolution

Ancient calendars:

  • Lunar calendars: Based on moon phases (~29.5 days per month)
  • Solar calendars: Based on seasonal year (365.25 days)
  • Lunisolar calendars: Combine both (Hebrew, Chinese)

Gregorian Calendar (1582):

  • Reformed Julian calendar
  • Year = 365.2425 days (very close to true solar year: 365.2422 days)
  • Leap year rules:
    • Divisible by 4: Leap year (1600, 2000, 2004, 2024)
    • Divisible by 100: Not leap year (1700, 1800, 1900)
    • Divisible by 400: Leap year anyway (1600, 2000, 2400)
  • Now used in nearly all countries for civil purposes

of the Minute

Ancient Babylonian Origins (c. 3000 BCE)

The foundation of the minute lies in the Sumerian and Babylonian sexagesimal (base-60) number system developed in ancient Mesopotamia around 3000 BCE. The Babylonians used this system for:

  1. Astronomical calculations: Dividing the celestial sphere and tracking planetary movements
  2. Geometric measurements: Dividing circles into 360 degrees (6 × 60)
  3. Mathematical computations: Facilitating complex fractions and divisions
  4. Calendar systems: Organizing time into convenient subdivisions

Cuneiform tablets from this era show sophisticated astronomical observations recorded using base-60 divisions, laying groundwork for the eventual minute.

Greek Astronomical Adoption (150 CE)

The ancient Greeks, particularly Claudius Ptolemy (c. 100-170 CE), formalized the division of hours and degrees into 60 parts in his astronomical treatise Almagest. Ptolemy used Latin terminology inherited from earlier traditions:

  • "pars minuta prima" (first minute/small part) = 1/60 of a degree or hour → modern minute
  • "pars minuta secunda" (second minute/small part) = 1/60 of a minute = 1/3600 of a degree/hour → modern second

These terms were primarily used for angular measurement in astronomy and navigation (describing positions of stars and planets), not yet for practical daily timekeeping.

Medieval Islamic and European Transmission (800-1300 CE)

During the Islamic Golden Age (8th-13th centuries), Arab astronomers and mathematicians preserved and expanded on Greek astronomical texts, continuing to use the 60-part division system.

When European scholars translated Arabic astronomical manuscripts in the 12th and 13th centuries (particularly at translation centers in Toledo, Spain, and Sicily), they reintroduced the Latin terms "pars minuta prima" and "pars minuta secunda" to European scholarship.

However, these remained primarily theoretical and astronomical units. Practical timekeeping in medieval Europe relied on:

  • Sundials (showing hours)
  • Water clocks (clepsydrae)
  • Candle clocks (burning time)
  • Church bells marking canonical hours (Matins, Prime, Terce, Sext, None, Vespers, Compline)

None of these devices tracked minutes—they were too imprecise, and daily life didn't require such granularity.

Mechanical Clocks Emerge—But No Minute Hands (1300s)

The first mechanical clocks appeared in Europe around 1280-1300, installed in church towers and public buildings. Early examples include:

  • Salisbury Cathedral clock (England, c. 1386) - still running, one of the oldest working clocks
  • Wells Cathedral clock (England, c. 1390)
  • Prague Astronomical Clock (Czech Republic, 1410)

Crucially, these early clocks had only an HOUR hand. They were too inaccurate (losing or gaining 15-30 minutes per day) to justify displaying minutes. The concept of "being on time" to the minute was essentially meaningless when clocks could drift that much daily.

Pendulum Revolution: Minutes Become Meaningful (1656)

The transformative moment for minute-level timekeeping came with Christiaan Huygens' invention of the pendulum clock in 1656. This invention improved timekeeping accuracy from errors of 15 minutes per day to less than 15 seconds per day—a roughly 60-fold improvement.

Why pendulums revolutionized accuracy:

  • A pendulum's swing period depends only on its length and gravity (Galileo's discovery, 1602)
  • Length is constant → period is constant → highly regular "tick"
  • Formula: Period = 2π√(L/g), where L = length, g = gravitational acceleration
  • A 1-meter pendulum has a period of approximately 2 seconds—perfect for timekeeping

With this accuracy, displaying minutes became both practical and necessary. Clockmakers began adding minute hands to clock faces around 1660-1680.

Minute Hands Become Standard (1670-1750)

By the late 17th century:

  • 1670s: Quality clocks routinely featured minute hands
  • 1680s: Balance spring invention (Huygens and Robert Hooke) further improved accuracy, enabling portable watches to track minutes
  • 1700s: Minute display became universal on both public clocks and personal timepieces
  • 1761: John Harrison's H4 marine chronometer achieved extraordinary accuracy (losing only 5 seconds on a 81-day voyage), revolutionizing navigation

The minute transformed from an astronomical abstraction to a practical daily measurement, changing social organization fundamentally.

Societal Impact: The "Minute Culture" (1800s)

The 19th century saw the rise of minute-precise scheduling, driven by:

  1. Railroad timetables (1840s onward):

    • Trains required synchronized schedules to prevent collisions
    • Railway time standardized clocks across regions
    • Timetables specified arrivals/departures to the minute
    • This drove development of time zones and standard time
  2. Factory work and "time discipline" (Industrial Revolution):

    • Factory shifts started at precise times (e.g., 7:00 AM, not "dawn")
    • Workers punched time clocks tracking arrival to the minute
    • The concept of "being late" became economically significant
    • Frederick Winslow Taylor's "scientific management" (1880s-1910s) measured work tasks in minutes and seconds
  3. Urban life coordination:

    • Meeting times specified to the minute
    • Public transportation schedules
    • School bell systems marking class periods

This represented a profound cultural shift: pre-industrial societies organized time around seasonal cycles, sunlight, and approximate "hours." Industrial society required minute-level coordination of human activity.

Atomic Age: Minutes Defined by Seconds (1967-Present)

When the second was redefined in 1967 based on caesium-133 atomic oscillations (9,192,631,770 cycles = 1 second), the minute automatically inherited this precision:

1 minute = exactly 60 × 9,192,631,770 caesium oscillations = 551,558,906,200 caesium oscillations

Modern atomic clocks maintain this definition with extraordinary stability, losing less than 1 second in 100 million years. This means the minute is now defined with sub-nanosecond precision, far beyond any practical human need but essential for:

  • GPS systems (requiring nanosecond synchronization)
  • Financial trading (high-frequency trading in microseconds)
  • Telecommunications (network synchronization)
  • Scientific experiments (particle physics, gravitational wave detection)

The "525,600 Minutes" Cultural Moment (1996)

In 1996, the musical Rent by Jonathan Larson opened on Broadway, featuring the iconic song "Seasons of Love," which begins:

"Five hundred twenty-five thousand, six hundred minutes... How do you measure, measure a year?"

This number—525,600 minutes = 365 days × 24 hours × 60 minutes—became a cultural touchstone, highlighting the minute as a unit for measuring the passage of life itself, not just scheduling appointments.

Common Uses and Applications: days vs minutes

Explore the typical applications for both Day (imperial/US) and Minute (imperial/US) to understand their common contexts.

Common Uses for days

and Applications

1. Age and Lifespan Measurement

Human life measured in days:

  • Age calculation:

    • Newborn: Age in days (first month)
    • Infant: Days and weeks (first 12 months)
    • Adult: Years (365.25 days per year)
  • Life expectancy:

    • Global average: ~73 years = 26,645 days
    • US average: ~78 years = 28,470 days
    • Japan (highest): ~84 years = 30,660 days
  • Milestones:

    • 100 days: Traditional celebration in some cultures
    • 1,000 days: ~2.7 years (toddler milestone)
    • 10,000 days: ~27.4 years (young adult)
    • 20,000 days: ~54.8 years (mid-life)
    • 30,000 days: ~82.2 years (if reached, long life)
  • Historical figures:

    • "Lived 90 years" = 32,850 days
    • Queen Elizabeth II: 35,065 days (96 years, 140 days)
    • Oldest verified person: Jeanne Calment, 44,724 days (122 years, 164 days)

2. Project Management and Planning

Projects measured in days:

  • Timeline terminology:

    • "Day 0": Project start
    • "Elapsed days": Total calendar days
    • "Working days": Excluding weekends/holidays
    • "Man-days": One person working one day
  • Estimation:

    • "3-day task"
    • "2-week project" = 10 working days
    • "6-month project" = ~130 working days
  • Milestones:

    • "Deliverable due Day 30"
    • "Phase 1 complete Day 45"
    • "Final deadline Day 90"
  • Agile/Scrum:

    • Sprint: 14 days (2 weeks) typical
    • Daily standup: Every day, 15 minutes
    • Sprint review: End of 14-day sprint

3. Astronomy and Planetary Science

Planetary rotation periods measured in days:

  • Planetary "days" (rotation period):

    • Mercury: 58.6 Earth days
    • Venus: 243 Earth days (slower than its year!)
    • Earth: 1 day (23 hours 56 min sidereal)
    • Mars: 1.03 days (24 hours 37 min) - called a "sol"
    • Jupiter: 0.41 days (9 hours 56 min)
    • Saturn: 0.45 days (10 hours 33 min)
    • Uranus: 0.72 days (17 hours 14 min)
    • Neptune: 0.67 days (16 hours 6 min)
  • Orbital periods (years in days):

    • Mercury year: 88 Earth days
    • Venus year: 225 Earth days
    • Mars year: 687 Earth days
    • Earth year: 365.25 days
  • Mars missions:

    • Use "sols" (Mars days) for mission planning
    • Sol 1, Sol 2, Sol 3... (rovers like Curiosity, Perseverance)
    • Communication delay: 3-22 minutes (depends on planets' positions)
  • Astronomical events:

    • Lunar month: 29.53 days (new moon to new moon)
    • Eclipse cycles: Saros cycle = 6,585.3 days (18 years, 11 days)

4. Weather and Climate

Weather patterns measured in days:

  • Forecasting:

    • 1-day forecast: Very accurate (~90%)
    • 3-day forecast: Accurate (~80%)
    • 7-day forecast: Moderately accurate (~65%)
    • 10+ day forecast: Less reliable
  • Weather phenomena:

    • Heat wave: 3+ consecutive days above threshold
    • Cold snap: 2+ days below freezing
    • Drought: 15+ days without significant rain
  • Seasonal patterns:

    • Growing season: Number of frost-free days (150-200+ days)
    • Rainy season: 90-180 days (tropics)
    • Winter: Shortest day (winter solstice) vs. longest night
  • Degree days:

    • Heating degree days (HDD): Measure of cold
    • Cooling degree days (CDD): Measure of heat
    • Base 65°F: Sum of daily degrees below/above
  • Climate records:

    • "Hottest day on record"
    • "100 days above 90°F" (Phoenix averages 110+ days)
    • "Consecutive days of rain" (record: 331 days, Kauai)

5. Finance and Business

Financial operations measured in days:

  • Payment terms:

    • Net 30: Payment due 30 days after invoice
    • Net 60: Payment due 60 days after invoice
    • 2/10 Net 30: 2% discount if paid within 10 days, otherwise due in 30
  • Interest calculation:

    • Daily interest: Annual rate ÷ 365 days
    • Grace period: 21-25 days (credit cards)
    • Late fees: Applied after due date + grace period
  • Financial metrics:

    • Days sales outstanding (DSO): Average days to collect payment
    • Days payable outstanding (DPO): Average days to pay suppliers
    • Days inventory outstanding (DIO): Average days inventory held
  • Trading:

    • "Trading day": Stock market open day (weekdays, excluding holidays)
    • NYSE: ~252 trading days per year
    • Settlement: T+2 (trade day + 2 business days)
  • Bonds:

    • Accrued interest calculated by day
    • 30/360 day count convention (assumes 30-day months)
    • Actual/365: Uses actual calendar days

6. Data Storage and Computing

Digital retention measured in days:

  • Backups:

    • Daily backups: 7 days retained (1 week)
    • Weekly backups: 30 days retained (1 month)
    • Monthly backups: 365 days retained (1 year)
  • Logs:

    • Server logs: 30-90 days retention typical
    • Security logs: 90-365 days (compliance requirements)
    • Application logs: 14-30 days
  • Caching:

    • Browser cache: 30 days default
    • CDN cache: 1-30 days depending on content
    • DNS cache: 1 day (86,400 seconds TTL common)
  • Data retention policies:

    • GDPR: 30 days to fulfill deletion request
    • Email: Auto-delete after 90 days (some organizations)
    • Trash/recycle bin: 30 days before permanent deletion

7. Habits and Personal Development

Habit formation measured in days:

  • Popular beliefs:

    • "21 days to form a habit" (myth - actually varies widely)
    • "30-day challenge" (fitness, meditation, etc.)
    • "90-day transformation programs"
  • Research findings:

    • Average habit formation: 66 days (range: 18-254 days)
    • Simple habits: 18-30 days
    • Complex habits: 200+ days
  • Streaks:

    • "100-day streak" on language apps (Duolingo)
    • "30-day yoga challenge"
    • "365-day photo project" (one photo per day for a year)
  • Reading goals:

    • "Read every day for 30 days"
    • "One book per week" = finish in 7 days
    • "365 books in a year" = 1 per day

When to Use minutes

and Applications

1. Time Management and Productivity

The minute is the fundamental unit for personal and professional time management:

  • Pomodoro Technique: Work in 25-minute focused sessions, followed by 5-minute breaks
  • Time blocking: Schedule day in 15-, 30-, or 60-minute blocks
  • Task estimation: "This report will take 45 minutes"
  • Billable hours: Professional services (lawyers, consultants) often bill in 6-minute increments (0.1 hour)
  • Timesheet tracking: Many systems track work time to the minute

Digital tools: Calendar apps (Google Calendar, Outlook), time tracking software (Toggl, RescueTime), and project management platforms (Asana, Monday.com) all operate on minute-based scheduling.

2. Scheduling and Appointments

Minutes enable precise coordination of activities:

  • Appointment times: "Dentist at 3:15 PM" (hours and minutes)
  • Event start times: "Meeting begins at 10:30 AM sharp"
  • Transit timetables: "Train departs at 8:47 AM"
  • Reservation systems: OpenTable shows "5:30 PM" or "8:45 PM" slots
  • Class schedules: "Period 3: 10:25-11:15 AM" (50-minute period)

Buffer times: Professional schedulers often include 5-10 minute buffers between appointments to prevent domino-effect delays.

3. Sports and Athletic Competition

Many sports use minutes for game structure and performance measurement:

  • Game periods:

    • Soccer: Two 45-minute halves
    • Basketball (NBA): Four 12-minute quarters = 48 minutes total
    • Basketball (NCAA): Two 20-minute halves = 40 minutes
    • Hockey: Three 20-minute periods
    • Rugby: Two 40-minute halves
  • Penalties and suspensions:

    • Hockey penalty box: 2-minute, 4-minute, or 5-minute penalties
    • Soccer yellow card: 10-minute sin bin (trial rule in some leagues)
  • Running performance:

    • Mile time: 4-6 minutes (recreational), under 4 minutes (elite)
    • 5K time: 15-30 minutes (recreational), 13-15 minutes (competitive)
    • Marathon pace: Expressed as minutes per mile/km
  • Timeouts:

    • NBA timeout: 75 seconds (1.25 minutes) or 30 seconds
    • NFL timeout: Each team gets three per half
    • College football: 1-minute timeouts

4. Navigation and Geography

Beyond time measurement, "minute" has a distinct meaning in navigation:

Arcminute (minute of arc):

  • Symbol: ′ (prime symbol)
  • 1 arcminute = 1/60 of a degree of angle
  • 1 degree = 60 arcminutes = 60′
  • 1 arcminute = 60 arcseconds = 60″

Latitude and longitude:

  • Geographic coordinates: 40°45′30″N, 73°59′00″W (New York City)
  • Reads as: "40 degrees, 45 minutes, 30 seconds North; 73 degrees, 59 minutes, 0 seconds West"

Nautical mile:

  • 1 nautical mile = 1 arcminute of latitude (approximately 1,852 meters)
  • This makes ocean navigation calculations elegant: traveling 60 nautical miles north changes your latitude by 1 degree

Map precision:

  • 1 arcminute of latitude ≈ 1.85 km (1.15 miles)
  • 1 arcminute of longitude ≈ 1.85 km at equator (decreases toward poles)
  • Modern GPS coordinates often express minutes with decimal precision: 40°45.5′N

5. Digital Timekeeping and Computing

Computers and digital devices track time in minutes (and smaller units):

  • System clocks: Display hours:minutes (14:35) or hours:minutes:seconds (14:35:47)
  • File timestamps: Modified time recorded as YYYY-MM-DD HH:MM:SS
  • Cron jobs: Unix/Linux scheduled tasks use minute-level specification (0-59)
  • Session timeouts: "Session will expire in 5 minutes of inactivity"
  • Auto-save intervals: Microsoft Word auto-saves every 10 minutes (default)
  • Video timestamps: YouTube shows 5:23 (5 minutes, 23 seconds)
  • Countdown timers: Online cooking timers, exam clocks, auction endings

6. Aviation and Air Travel

The aviation industry relies heavily on minute-precise timing:

  • Flight schedules: Departure 10:25 AM, arrival 1:47 PM (all times to the minute)
  • Flight duration: "Flight time: 2 hours 34 minutes"
  • Boarding times: "Boarding begins 30 minutes before departure"
  • Gate changes: "Gate closes 10 minutes before departure"
  • Air traffic control: Separation requirements measured in minutes between aircraft
  • Fuel planning: Reserve fuel calculated for 30-45 minutes of additional flight time

7. Education and Testing

Academic settings structure learning and assessment by minutes:

  • Class periods:

    • Elementary school: 45-60 minute periods
    • High school: 50-minute periods (traditional) or 90-minute blocks
    • University lecture: 50 minutes ("hour" classes), 80 minutes (longer sessions)
    • "10-minute break" between classes
  • Standardized tests:

    • SAT Reading section: 65 minutes
    • SAT Math (calculator): 55 minutes
    • ACT Science: 35 minutes
    • GRE Verbal section: 30 minutes
    • LSAT Logical Reasoning: 35 minutes per section
  • Test-taking strategy: Students allocate time per question (e.g., "100 questions in 60 minutes = 36 seconds per question")

8. Parking and Paid Time

Many services charge based on minute increments:

  • Parking meters:

    • 15-minute minimum in some cities
    • $2 per hour = $0.50 per 15 minutes
    • Digital meters show minutes remaining
  • Bike/scooter sharing:

    • Lime, Bird, Citibike: Charge per minute (e.g., $0.39/min)
    • "Unlock fee + per-minute rate"
  • Phone plans (historical):

    • Pre-smartphone era: Plans sold as "450 minutes per month"
    • Long-distance charges: "5¢ per minute"
    • Modern shift: Unlimited minutes, data caps instead
  • Professional services:

    • Legal billing: Often in 6-minute increments (1/10 hour)
    • Therapy sessions: 50-minute "hour" (allows 10 minutes for notes)
    • Consulting rates: "$200/hour" = $3.33/minute

9. Emergency Services

Response time measured in minutes can mean life or death:

  • Response time targets:

    • Ambulance (urban): 8 minutes average target
    • Fire department: 4-minute turnout time (from alarm to truck departure)
    • Police: Varies widely, 5-10 minutes for priority calls
  • Emergency medical guidelines:

    • Start CPR within 1 minute of cardiac arrest recognition
    • Defibrillation within 3-5 minutes of cardiac arrest improves survival
    • Every 1-minute delay in defibrillation decreases survival by 7-10%
    • "Time is tissue" in stroke care: Every minute counts
  • 911 call processing:

    • Average call duration: 2-3 minutes
    • Location identification: Should be under 30 seconds
    • "Stay on the line" until help arrives

Additional Unit Information

About Day (d)

How many hours are in a day?

Exactly 24 hours in a standard civil day.

This is a defined constant: 1 day = 24 hours = 1,440 minutes = 86,400 seconds.

Exception: Daylight Saving Time transitions create days with 23 hours (spring forward) or 25 hours (fall back) in regions that observe DST.

How many seconds are in a day?

Exactly 86,400 seconds in a standard day.

Calculation: 24 hours × 60 minutes × 60 seconds = 86,400 seconds

Since 1967, this equals 793,927,920,332,800,000 caesium-133 oscillations (~794 quadrillion).

Exception: Days with leap seconds have 86,401 seconds (last occurred December 31, 2016).

Is every day exactly 24 hours long?

For civil timekeeping: Yes. The day is defined as exactly 24 hours (86,400 seconds).

For Earth's rotation: No. Earth's actual rotation period varies:

  • Gradually slowing (~1.7 milliseconds per century) due to tidal friction from Moon
  • Seasonal variations (±1 millisecond) from atmospheric/oceanic changes
  • Irregular variations from earthquakes, ice melt, core-mantle coupling

Solution: Leap seconds occasionally added to keep clock time synchronized with Earth's rotation (within 0.9 seconds).

What's the difference between a solar day and a sidereal day?

Solar day (24 hours):

  • Time from one solar noon to the next (sun at highest point)
  • What we use for civil timekeeping
  • Accounts for Earth's orbit around sun

Sidereal day (23 hours, 56 minutes, 4 seconds):

  • Time for Earth to rotate 360° relative to distant stars
  • Used in astronomy for telescope tracking
  • ~4 minutes shorter than solar day

Why the difference? After Earth rotates 360° (one sidereal day), it has moved ~1° along its orbit. It must rotate an additional ~1° (~4 minutes) for the sun to return to the same position in the sky.

Result: 365 solar days per year, but 366 sidereal days per year (one extra rotation due to orbit).

Why does February have 28 days?

Historical reasons:

  1. Roman calendar (753 BCE):

    • Originally 10 months, 304 days (March-December)
    • Winter was monthless period
  2. Numa Pompilius reform (c. 713 BCE):

    • Added January and February
    • Romans considered even numbers unlucky
    • Made most months 29 or 31 days
    • February got leftover days: 28 (occasionally 29)
  3. Julius Caesar (45 BCE):

    • Julian calendar: 365.25-day year
    • Added day to February every 4 years (leap year)
    • February remained shortest month
  4. Pope Gregory XIII (1582):

    • Gregorian calendar reform
    • Refined leap year rules
    • February kept 28/29-day structure

Why not fix it? Changing calendar would disrupt billions of systems worldwide (contracts, software, cultural traditions).

How many days are in a year?

Common year: 365 days Leap year: 366 days

Solar/tropical year (Earth's orbit): 365.2422 days (365 days, 5 hours, 48 minutes, 46 seconds)

Leap year rules (Gregorian calendar):

  • Divisible by 4: Leap year (2024, 2028)
  • Divisible by 100: Not leap year (2100, 2200)
  • Divisible by 400: Leap year (2000, 2400)

Average Gregorian year: 365.2425 days (very close to true solar year)

Other calendar systems:

  • Islamic calendar: 354 days (lunar)
  • Hebrew calendar: 353-385 days (lunisolar, variable)
  • Julian calendar: 365.25 days (old system, now obsolete)

What is a leap second?

A leap second is an extra second added to clocks to keep atomic time synchronized with Earth's rotation.

Why needed:

  • Earth's rotation gradually slowing (tidal friction)
  • Atomic clocks run at constant rate (86,400 seconds per day)
  • Without leap seconds, clock time would drift from solar time

How it works:

  • Added at end of June 30 or December 31
  • Clock reads 23:59:59 → 23:59:60 → 00:00:00 (next day)
  • That day has 86,401 seconds instead of 86,400

History:

  • 27 leap seconds added between 1972-2016
  • Last one: December 31, 2016
  • None added since (Earth's rotation has been speeding up slightly)

Controversy:

  • Causes problems for computer systems
  • Proposed to abolish in favor of letting atomic time drift (then add "leap hour" every few centuries)

How do different cultures define when a day starts?

Different traditions begin the day at different times:

Midnight (00:00) - Modern civil time:

  • Used by most countries for official purposes
  • Inherited from Roman tradition
  • Convenient for business (avoids confusion around midday)

Sunset - Jewish and Islamic tradition:

  • Hebrew calendar: Day begins at sunset
  • Islamic calendar: Day begins at sunset
  • Biblical: "And there was evening, and there was morning—the first day"
  • Makes sense for agricultural societies

Dawn/Sunrise - Ancient Egypt, Hinduism:

  • Egyptian day began at sunrise
  • Hindu day traditionally begins at sunrise
  • Natural marker of "beginning" of daylight

Noon - Ancient Babylonians (some periods):

  • Based on sun at highest point
  • Astronomical reference

Modern inconsistency:

  • Civil day: Midnight
  • Religious calendars: Often sunset
  • Common language: "Day" often means daylight hours only

How old am I in days?

Formula: Age in days = (Years × 365.25) + extra days since last birthday

Example:

  • Born January 1, 2000
  • Today is November 26, 2024
  • Age: 24 years, 329 days
  • Days: (24 × 365.25) + 329 ≈ 9,095 days

Online calculators:

  • Many websites calculate exact age in days
  • Account for actual leap years experienced
  • Can calculate down to hours/minutes/seconds

Milestones:

  • 1,000 days: ~2.7 years old
  • 10,000 days: ~27.4 years old ("10,000-day birthday")
  • 20,000 days: ~54.8 years old
  • 30,000 days: ~82.2 years old (if reached)

Why is a week 7 days?

Ancient origins:

  1. Babylonian astronomy (c. 2000 BCE):

    • Seven visible celestial bodies: Sun, Moon, Mercury, Venus, Mars, Jupiter, Saturn
    • Each "ruled" one day
    • 7-day planetary week
  2. Biblical/Jewish tradition:

    • Genesis creation story: God created world in 6 days, rested on 7th
    • Sabbath (7th day) holy day of rest
    • Commandment: "Remember the Sabbath day"
  3. Roman adoption:

    • Romans adopted 7-day week (1st-3rd century CE)
    • Named days after planets/gods
    • Spread throughout Roman Empire
  4. Global spread:

    • Christianity spread 7-day week with Sunday as holy day
    • Islam adopted 7-day week with Friday as holy day
    • Now universal worldwide

Why not 10 days?

  • French Revolution tried 10-day week (1793-1805) - failed
  • USSR tried 5-day and 6-day weeks (1929-1940) - abandoned
  • 7-day week too culturally embedded to change

Day names (English):

  • Sunday: Sun's day
  • Monday: Moon's day
  • Tuesday: Tiw's day (Norse god)
  • Wednesday: Woden's day (Odin)
  • Thursday: Thor's day
  • Friday: Frigg's day (Norse goddess)
  • Saturday: Saturn's day

Can a day ever be longer or shorter than 24 hours?

For civil timekeeping: Usually no. A day is defined as exactly 24 hours (86,400 seconds).

Exceptions:

  1. Leap seconds:

    • Day with leap second = 86,401 seconds (0.001% longer)
    • 27 instances between 1972-2016
    • Adds one second at end of June 30 or December 31
  2. Daylight Saving Time:

    • "Spring forward" day: 23 hours (lose 1 hour)
    • "Fall back" day: 25 hours (gain 1 hour)
    • Only in regions observing DST
  3. Time zone transitions:

    • Crossing International Date Line can skip or repeat a day
    • Country changing time zones can alter day length
  4. Earth's actual rotation:

    • Varies by ±1 millisecond seasonally
    • Gradually slowing (~1.7 ms per century)
    • But civil day remains fixed at 86,400 seconds

Historical:

  • Ancient "seasonal hours" made days vary by season
  • Equal 24-hour days standardized with mechanical clocks (1300s)

About Minute (min)

How many seconds are in a minute?

Exactly 60 seconds. This has been standardized since medieval times and is based on the Babylonian base-60 (sexagesimal) number system. Since 1967, when the second was redefined using atomic cesium-133 clocks, one minute equals precisely 60 atomic seconds, or 551,558,906,200 oscillations of caesium-133 radiation.

How many minutes are in an hour?

Exactly 60 minutes. This also comes from Babylonian mathematics. The hour was divided into 60 "first small parts" (Latin: pars minuta prima = minutes), just as each minute is divided into 60 "second small parts" (Latin: pars minuta secunda = seconds).

Why are there 60 minutes in an hour, not 100?

The base-60 system comes from ancient Babylonian mathematics (c. 3000 BCE). The Babylonians chose 60 because it's highly divisible—it has 12 factors (1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60), making fractions much simpler:

  • 1/2 hour = 30 min (whole number)
  • 1/3 hour = 20 min (whole number)
  • 1/4 hour = 15 min (whole number)
  • 1/5 hour = 12 min (whole number)
  • 1/6 hour = 10 min (whole number)

Contrast with 100 (decimal): 1/3 of 100 = 33.33... (repeating decimal). The Babylonians had sophisticated astronomy requiring complex divisions, so base-60 was superior.

How many minutes are in a day?

1,440 minutes in one 24-hour day.

Calculation: 24 hours × 60 minutes/hour = 1,440 minutes

Breakdown:

  • 12 hours (half day) = 720 minutes
  • 6 hours (quarter day) = 360 minutes
  • 1 hour = 60 minutes

How many minutes are in a year?

525,600 minutes in a standard 365-day year.

Calculation: 365 days × 24 hours × 60 minutes = 525,600 minutes

This number was popularized by the opening song "Seasons of Love" from the 1996 Broadway musical Rent:

"Five hundred twenty-five thousand, six hundred minutes... How do you measure, measure a year?"

For a leap year (366 days): 527,040 minutes (1,440 more minutes).

What's the difference between a minute of time and an arcminute?

Time minute: A unit of duration equal to 60 seconds.

  • Symbol: min (or sometimes just listed as "minutes")
  • Used for measuring elapsed time, scheduling, etc.

Arcminute (minute of arc): A unit of angular measurement equal to 1/60 of a degree.

  • Symbol: ′ (prime symbol)
  • Used in astronomy, navigation, and geographic coordinates
  • Example: 40°45′30″N = 40 degrees, 45 arcminutes, 30 arcseconds North latitude

Key connection: In navigation, 1 arcminute of latitude = 1 nautical mile (approximately 1,852 meters). This elegant relationship makes nautical charts and navigation calculations simpler.

Same name, different measurements:

  • Both descend from the Latin pars minuta prima (first small part) referring to 1/60 divisions
  • Context clarifies which is meant

How do I convert minutes to decimal hours?

Formula: Decimal hours = minutes ÷ 60

Examples:

  • 30 minutes = 30 ÷ 60 = 0.5 hours
  • 15 minutes = 15 ÷ 60 = 0.25 hours
  • 45 minutes = 45 ÷ 60 = 0.75 hours
  • 90 minutes = 90 ÷ 60 = 1.5 hours
  • 20 minutes = 20 ÷ 60 = 0.333... hours (approximately 0.33)

Common conversions:

  • 6 minutes = 0.1 hours (used in legal billing: 0.1 hour increments)
  • 12 minutes = 0.2 hours
  • 18 minutes = 0.3 hours
  • 36 minutes = 0.6 hours

Reverse (decimal hours to minutes): Multiply decimal part by 60

  • Example: 1.75 hours = 1 hour + (0.75 × 60) = 1 hour 45 minutes

How do I convert hours:minutes format to just minutes?

Formula: Total minutes = (hours × 60) + minutes

Examples:

  • 1:30 (1 hour 30 min) = (1 × 60) + 30 = 90 minutes
  • 2:15 (2 hours 15 min) = (2 × 60) + 15 = 135 minutes
  • 0:45 (45 minutes) = (0 × 60) + 45 = 45 minutes
  • 3:20 (3 hours 20 min) = (3 × 60) + 20 = 200 minutes
  • 8:00 (8 hours) = (8 × 60) + 0 = 480 minutes (full work day)

This is useful for calculating total duration, comparing times, or doing time arithmetic.

When did clocks start showing minutes?

Early mechanical clocks (1300s-1650s) had only hour hands because they weren't accurate enough to justify showing minutes. Early clocks could lose or gain 15-30 minutes per day.

Minute hands appeared around 1670-1680, shortly after Christiaan Huygens invented the pendulum clock in 1656, which improved accuracy from ~15 minutes/day error to ~15 seconds/day error—a roughly 60× improvement.

Key timeline:

  • 1656: Huygens invents pendulum clock
  • 1657: First pendulum clocks built (with minute hands)
  • 1670s: Minute hands become standard on quality clocks
  • 1675: Balance spring invented (Huygens/Hooke), further improving accuracy
  • 1680s: Pocket watches begin including minute hands
  • 1700s: Minute display becomes universal

Before this, society didn't need minute-level precision—daily life organized around hours, bells, and approximate times. The pendulum clock created both the technical ability and social need for minute-based scheduling.

Do all countries use minutes the same way?

Yes—the 60-minute hour is universal worldwide. Unlike distance (metric vs. imperial) or temperature (Celsius vs. Fahrenheit), time measurement is globally standardized:

  • All countries use 60 seconds per minute
  • All countries use 60 minutes per hour
  • All countries use 24 hours per day

International Standards:

  • ISO 8601 (international date/time standard) uses HH:MM:SS format universally
  • Coordinated Universal Time (UTC) is the global time standard
  • All time zones are defined as offsets from UTC (e.g., EST = UTC-5, JST = UTC+9)

Cultural differences in time display (not measurement):

  • 12-hour format (US, Canada, Australia, Philippines): 3:45 PM
  • 24-hour format (most of world, military, aviation): 15:45
  • Both systems use the same 60-minute hours—just different notation

Historical exception: During the French Revolution (1793-1805), France briefly tried decimal time with 100-minute hours, but it was abandoned as impractical.

How do stopwatches and timers measure fractions of a minute?

Stopwatches display time more precisely than minutes using minutes:seconds.deciseconds format:

Common formats:

  • M:SS (minutes:seconds) — e.g., 3:45 = 3 minutes, 45 seconds
  • M:SS.SS (minutes:seconds.centiseconds) — e.g., 3:45.23 = 3 min, 45.23 sec
  • H:MM:SS (hours:minutes:seconds) — e.g., 1:23:45 = 1 hr, 23 min, 45 sec

Precision levels:

  • Sport timing: Typically to 0.01 seconds (centiseconds)
    • Olympic 100m: 9.58 seconds (Usain Bolt world record)
  • Lab/scientific stopwatches: To 0.001 seconds (milliseconds)
  • Atomic clocks: To nanoseconds (0.000000001 seconds) or better

Digital displays:

  • Phone stopwatch: Usually shows minutes:seconds.centiseconds (3:45.67)
  • Microwave timer: Usually shows minutes:seconds only (3:45)
  • Oven timer: Minutes only for long cooking (45), or minutes:seconds for precise tasks

Fractions of minutes in speech:

  • "Three and a half minutes" = 3:30
  • "Two minutes thirty seconds" = 2:30
  • "Five minutes fifteen seconds" = 5:15

Why do clocks go up to 60 minutes, not continue beyond?

At 60 minutes, the minute counter resets to 0 and the hour increments by 1. This is called modular arithmetic or "clock arithmetic":

  • 0 minutes → 1 minute → ... → 59 minutes → 0 minutes (next hour)
  • Example: 2:59 PM + 1 minute = 3:00 PM (not 2:60 PM)

Why?

  • Babylonian base-60 system: We use 60 as the cycle
  • Analog clock design: The minute hand makes one complete circle (360°) per hour, returning to 12
  • Mathematical consistency: Just as we don't have 60 seconds (it becomes 1 minute), we don't have 60 minutes (it becomes 1 hour)

Modulo 60:

  • In mathematics, this is written as minutes mod 60
  • Adding times requires carrying: 45 min + 20 min = 65 min = 1 hr 5 min
  • Computer timekeeping uses this logic internally

Exception: Elapsed time can exceed 60 minutes:

  • "This meeting lasted 90 minutes" (1 hour 30 minutes)
  • Marathon time: 2:15:30 (2 hours, 15 minutes, 30 seconds)

Conversion Table: Day to Minute

Day (d)Minute (min)
0.5720
11,440
1.52,160
22,880
57,200
1014,400
2536,000
5072,000
100144,000
250360,000
500720,000
1,0001,440,000

People Also Ask

How do I convert Day to Minute?

To convert Day to Minute, enter the value in Day in the calculator above. The conversion will happen automatically. Use our free online converter for instant and accurate results. You can also visit our time converter page to convert between other units in this category.

Learn more →

What is the conversion factor from Day to Minute?

The conversion factor depends on the specific relationship between Day and Minute. You can find the exact conversion formula and factor on this page. Our calculator handles all calculations automatically. See the conversion table above for common values.

Can I convert Minute back to Day?

Yes! You can easily convert Minute back to Day by using the swap button (⇌) in the calculator above, or by visiting our Minute to Day converter page. You can also explore other time conversions on our category page.

Learn more →

What are common uses for Day and Minute?

Day and Minute are both standard units used in time measurements. They are commonly used in various applications including engineering, construction, cooking, and scientific research. Browse our time converter for more conversion options.

For more time conversion questions, visit our FAQ page or explore our conversion guides.

All Time Conversions

Second to MinuteSecond to HourSecond to DaySecond to WeekSecond to MonthSecond to YearSecond to MillisecondSecond to MicrosecondSecond to NanosecondSecond to DecadeSecond to CenturySecond to MillenniumSecond to FortnightSecond to Planck TimeSecond to ShakeSecond to Sidereal DaySecond to Sidereal YearMinute to SecondMinute to HourMinute to DayMinute to WeekMinute to MonthMinute to YearMinute to MillisecondMinute to MicrosecondMinute to NanosecondMinute to DecadeMinute to CenturyMinute to MillenniumMinute to FortnightMinute to Planck TimeMinute to ShakeMinute to Sidereal DayMinute to Sidereal YearHour to SecondHour to MinuteHour to DayHour to WeekHour to MonthHour to YearHour to MillisecondHour to MicrosecondHour to NanosecondHour to DecadeHour to CenturyHour to MillenniumHour to FortnightHour to Planck TimeHour to ShakeHour to Sidereal DayHour to Sidereal YearDay to SecondDay to HourDay to WeekDay to MonthDay to YearDay to MillisecondDay to MicrosecondDay to NanosecondDay to DecadeDay to CenturyDay to MillenniumDay to FortnightDay to Planck TimeDay to ShakeDay to Sidereal DayDay to Sidereal YearWeek to SecondWeek to MinuteWeek to HourWeek to DayWeek to MonthWeek to YearWeek to MillisecondWeek to MicrosecondWeek to NanosecondWeek to DecadeWeek to CenturyWeek to MillenniumWeek to FortnightWeek to Planck TimeWeek to ShakeWeek to Sidereal DayWeek to Sidereal YearMonth to SecondMonth to MinuteMonth to HourMonth to DayMonth to WeekMonth to YearMonth to MillisecondMonth to MicrosecondMonth to NanosecondMonth to DecadeMonth to CenturyMonth to MillenniumMonth to FortnightMonth to Planck TimeMonth to ShakeMonth to Sidereal DayMonth to Sidereal YearYear to SecondYear to MinuteYear to HourYear to DayYear to WeekYear to MonthYear to MillisecondYear to MicrosecondYear to NanosecondYear to DecadeYear to CenturyYear to MillenniumYear to FortnightYear to Planck TimeYear to ShakeYear to Sidereal DayYear to Sidereal YearMillisecond to SecondMillisecond to Minute

Verified Against Authority Standards

All conversion formulas have been verified against international standards and authoritative sources to ensure maximum accuracy and reliability.

NIST Time and Frequency

National Institute of Standards and TechnologyOfficial time standards and definitions

BIPM Second Definition

Bureau International des Poids et MesuresDefinition of the SI base unit for time

Last verified: December 3, 2025