Hour to Sidereal Day Converter

Convert hours to sidereal days with our free online time converter.

Quick Answer

1 Hour = 0.041781 sidereal days

Formula: Hour × conversion factor = Sidereal Day

Use the calculator below for instant, accurate conversions.

Our Accuracy Guarantee

All conversion formulas on UnitsConverter.io have been verified against NIST (National Institute of Standards and Technology) guidelines and international SI standards. Our calculations are accurate to 10 decimal places for standard conversions and use arbitrary precision arithmetic for astronomical units.

Last verified: December 2025Reviewed by: Sam Mathew, Software Engineer

Hour to Sidereal Day Calculator

How to Use the Hour to Sidereal Day Calculator:

  1. Enter the value you want to convert in the 'From' field (Hour).
  2. The converted value in Sidereal Day will appear automatically in the 'To' field.
  3. Use the dropdown menus to select different units within the Time category.
  4. Click the swap button (⇌) to reverse the conversion direction.
Share:

How to Convert Hour to Sidereal Day: Step-by-Step Guide

Converting Hour to Sidereal Day involves multiplying the value by a specific conversion factor, as shown in the formula below.

Formula:

1 Hour = 0.0417807 sidereal days

Example Calculation:

Convert 60 hours: 60 × 0.0417807 = 2.506845 sidereal days

Disclaimer: For Reference Only

These conversion results are provided for informational purposes only. While we strive for accuracy, we make no guarantees regarding the precision of these results, especially for conversions involving extremely large or small numbers which may be subject to the inherent limitations of standard computer floating-point arithmetic.

Not for professional use. Results should be verified before use in any critical application. View our Terms of Service for more information.

What is a Hour and a Sidereal Day?

The hour (symbol: h or hr) is a unit of time equal to 60 minutes, 3,600 seconds, or 1/24 of a day.

Official SI-derived definition: Since the second was redefined atomically in 1967, one hour equals exactly 3,600 seconds, where each second is 9,192,631,770 periods of caesium-133 radiation. Therefore:

  • 1 hour = 3,600 × 9,192,631,770 = 33,074,688,259,200,000 caesium-133 oscillations
  • This equals approximately 33.07 quadrillion atomic oscillations

Practical conversions:

  • 1 hour = 60 minutes (exact)
  • 1 hour = 3,600 seconds (exact)
  • 1 day = 24 hours (exact)
  • 1 week = 168 hours (7 × 24)
  • 1 year (365 days) = 8,760 hours (365 × 24)

The hour is not an SI base unit, but it is accepted for use with the SI due to its fundamental role in civil timekeeping and global coordination.

The 24-Hour Day

The division of the day into 24 hours reflects both astronomical reality and historical convention:

Astronomical basis:

  • Earth rotates 360° in ~24 hours (one solar day)
  • Each hour = 15° of rotation (360° ÷ 24 = 15°)
  • This is why time zones are spaced ~15° longitude apart
  • Solar noon occurs when the sun crosses the meridian (highest point)

Why 24, not 20 or 10?

  • Ancient Egyptians used base-12 counting (duodecimal)
  • 12 is highly divisible: factors are 1, 2, 3, 4, 6, 12
  • 12 daytime hours + 12 nighttime hours = 24-hour cycle
  • This system was inherited by Greeks, Romans, and eventually globally standardized

Solar vs. Sidereal Hours:

  • Solar hour: Based on Earth's rotation relative to the Sun (24 hours per cycle)
  • Sidereal hour: Based on Earth's rotation relative to distant stars (23 hours, 56 minutes, 4 seconds per cycle)
  • Civil timekeeping uses solar hours because they align with day/night cycles

What Is a Sidereal Day?

A sidereal day is the time required for Earth to complete one full rotation (360 degrees) on its axis relative to the fixed background stars.

Precise value: 1 sidereal day = 86,164.0905 seconds (mean sidereal day) = 23 hours, 56 minutes, 4.0905 seconds

Sidereal vs. Solar Day

Sidereal day (stellar reference):

  • Earth's rotation relative to distant stars
  • Duration: 23h 56m 4.091s
  • Used by astronomers for telescope pointing

Solar day (Sun reference):

  • Earth's rotation relative to the Sun
  • Duration: 24h 00m 00s (mean solar day)
  • Used for civil timekeeping (clocks, calendars)

The difference: ~3 minutes 56 seconds

Why Are They Different?

The sidereal-solar day difference arises from Earth's orbital motion around the Sun:

  1. Start position: Earth completes one full 360° rotation relative to stars (1 sidereal day)
  2. Orbital motion: During that rotation, Earth has moved ~1° along its orbit around the Sun
  3. Extra rotation needed: Earth must rotate an additional ~1° (~4 minutes) to bring the Sun back to the same position in the sky
  4. Result: Solar day = sidereal day + ~4 minutes

Analogy: Imagine walking around a merry-go-round while it spins. If you walk one full circle relative to the surrounding park (sidereal), you'll need to walk a bit farther to return to the same position relative to the merry-go-round center (solar).

One Extra Day Per Year

A surprising consequence: There is one more sidereal day than solar day in a year!

  • Solar year: 365.242199 solar days
  • Sidereal year: 365.256363 sidereal days
  • Extra sidereal days: 366.256363 - 365.242199 ≈ 1 extra day

Why? Earth makes 366.25 full rotations relative to the stars during one orbit, but we only experience 365.25 sunrises because we're moving around the Sun.


Note: The Hour is part of the imperial/US customary system, primarily used in the US, UK, and Canada for everyday measurements. The Sidereal Day belongs to the imperial/US customary system.

History of the Hour and Sidereal Day

of the Hour

Ancient Egyptian Origins (c. 2000 BCE)

The earliest systematic division of day and night into hours comes from ancient Egypt around 2000 BCE. Egyptian priests needed to schedule temple rituals and religious observations throughout the day and night.

Egyptian timekeeping innovations:

  1. Shadow clocks (sundials): Used during daylight to track time by shadow position

    • Divided daylight into 12 parts
    • Earliest example: Obelisk shadow clock (c. 1500 BCE)
  2. Water clocks (clepsydrae): Used at night and cloudy days

    • Water dripped from container at constant rate
    • Markings indicated elapsed time
    • Divided nighttime into 12 parts

Crucial limitation: Seasonal hours (temporales horae)

  • Summer daylight hours were longer than winter daylight hours
  • Example: In Egypt, summer daytime hour ≈ 75 minutes, winter daytime hour ≈ 45 minutes
  • Nighttime hours varied inversely (longer in winter, shorter in summer)
  • This made sense for agricultural societies organized around daylight availability

Why 12 divisions?

  • Egyptians used base-12 (duodecimal) counting, possibly because:
    • 12 lunar months per year
    • 12 knuckles on four fingers (excluding thumb)—convenient finger counting
    • 12 is highly divisible (1, 2, 3, 4, 6, 12)

Greek and Roman Refinement (300 BCE - 400 CE)

Hellenistic astronomers (c. 300 BCE) introduced the concept of equal-length hours:

  • "Equinoctial hours": Dividing the full 24-hour day-night cycle into 24 equal parts
  • Each equinoctial hour = 1/24 of a mean solar day
  • This was primarily used for astronomical calculations, not daily timekeeping
  • Hipparchus (c. 150 BCE) used equinoctial hours for celestial observations

Roman timekeeping:

  • Romans continued using seasonal hours for daily life
  • Day (from sunrise to sunset) divided into 12 horae
  • Night divided into 4 vigiliae (watches) of 3 hours each
  • "First hour" (prima hora) = first hour after sunrise (varies by season)
  • "Sixth hour" (sexta hora) = midday → origin of "siesta"
  • "Eleventh hour" = last hour before sunset → modern idiom "at the eleventh hour" (last minute)

Roman water clocks (clepsydrae):

  • Public water clocks in marketplaces
  • Adjusted seasonally to maintain 12-hour daytime divisions
  • Used for timing speeches in Senate (each senator allotted specific time)

Medieval Islamic Golden Age (700-1300 CE)

Islamic scholars made critical advances in precise timekeeping for astronomical observations and prayer time calculations:

Five daily prayers (salat):

  • Fajr (dawn), Dhuhr (midday), Asr (afternoon), Maghrib (sunset), Isha (evening)
  • Required accurate determination of solar positions
  • Drove development of sophisticated astronomical clocks

Key innovations:

  • Astronomical tables (zij): Calculated prayer times using equinoctial hours
  • Astrolabes: Portable astronomical computers for time determination
  • Advanced water clocks: Al-Jazari's "Castle Clock" (1206) featured complex automata
  • Mathematical timekeeping: Used trigonometry to calculate hour angles

Islamic astronomers fully adopted equinoctial hours for scientific work while society continued using seasonal hours for daily activities.

Mechanical Clocks and Hour Standardization (1300-1600)

The invention of mechanical clocks in medieval Europe around 1280-1300 CE forced the adoption of equal-length hours:

Why mechanical clocks standardized hours:

  • Mechanical escapement mechanisms tick at constant rates
  • Cannot automatically adjust for seasonal variations
  • Fixed 24-hour cycle physically built into clockwork
  • This made equal-length hours the practical default

Early public clocks:

  • Salisbury Cathedral Clock (England, c. 1386): Still running, one of oldest
  • Wells Cathedral Clock (England, c. 1390): Features astronomical dial
  • Prague Astronomical Clock (Czech Republic, 1410): Shows multiple time systems
  • Church tower clocks visible/audible across towns
  • Bells chimed on the hour, coordinating community activities

Impact on society:

  • Transition from "task-oriented time" (work until task done) to "clock time" (work specific hours)
  • Monasteries first adopted strict hour-based schedules (canonical hours)
  • Urban merchants and craftsmen followed
  • "Time discipline" emerged: punctuality became valued

Hour angles and navigation:

  • 1 hour = 15° longitude (since Earth rotates 360° in 24 hours)
  • Ships could determine longitude by comparing local solar noon to chronometer showing home port time
  • This principle drove development of marine chronometers in 1700s

12-Hour vs. 24-Hour Time Notation

12-hour clock (with AM/PM):

  • AM = ante meridiem (Latin: before midday)
  • PM = post meridiem (Latin: after midday)
  • Hours: 12:00 AM (midnight), 1 AM-11 AM, 12:00 PM (noon), 1 PM-11 PM
  • Used in: United States, Canada, Australia, Philippines, parts of Latin America
  • Ambiguity issue: 12:00 AM vs. 12:00 PM frequently confused

24-hour clock (military time):

  • Hours numbered 00:00 (midnight) through 23:59
  • Used in: Most of Europe, Asia, Africa, South America, military/aviation worldwide
  • ISO 8601 international standard: HH:MM:SS format (e.g., 14:30:00)
  • Eliminates AM/PM ambiguity
  • Preferred for timetables, logistics, computing

Historical development:

  • Ancient Egyptians and Romans used 1-12 numbering twice daily
  • 24-hour notation emerged with astronomical use in Renaissance
  • Military adoption (especially WWI era) standardized 24-hour format
  • Computing systems use 24-hour format internally

Time Zones: Dividing Earth into Hours (1883-1884)

Before the late 1800s, each town kept its own "local solar time" based on the sun's position. This created chaos for railroad timetables—a train journey might cross dozens of different local times.

Railroad time standardization (1883):

  • US/Canadian railroads established four continental time zones on November 18, 1883
  • Each zone spanned roughly 15° longitude (one hour)
  • Cities synchronized clocks within each zone

International Meridian Conference (1884, Washington D.C.):

  • Established Greenwich, England as 0° longitude (Prime Meridian)
  • Divided Earth into 24 standard time zones, each 15° wide
  • Each zone offset by one hour from UTC (Coordinated Universal Time, formerly GMT)
  • Created International Date Line at 180° longitude

Modern time zones:

  • Standard zones: UTC-12 to UTC+14 (some zones offset by 30 or 45 minutes)
  • Daylight Saving Time: Advances clocks 1 hour in summer in some regions
  • Political boundaries: Zones follow country borders, not just longitude
  • China uses single time zone (UTC+8) despite spanning 5 geographical zones

Atomic Era: Hours Defined by Seconds (1967-Present)

When the second was redefined atomically in 1967 based on caesium-133 oscillations, the hour inherited this precision:

1 hour = exactly 3,600 SI seconds = 33,074,688,259,200,000 caesium oscillations

Modern atomic clocks maintain this definition with extraordinary stability:

  • Caesium fountain clocks: Accurate to 1 second in 100 million years
  • Optical lattice clocks: Accurate to 1 second in 15 billion years (2019)
  • GPS satellites: Each carries atomic clocks synchronized to nanoseconds

Leap seconds:

  • Earth's rotation gradually slows (tidal friction)
  • Occasionally, an extra second added to clock time to match Earth rotation
  • 27 leap seconds added 1972-2016
  • Controversy: May be abolished in favor of "leap hours" every few centuries

Ancient Observations (2000-300 BCE)

Babylonian astronomy (circa 2000-1500 BCE):

  • Babylonian astronomers tracked stellar positions for astrological and calendrical purposes
  • Noticed stars rose earlier each night relative to the Sun's position
  • Created star catalogs showing this gradual eastward drift

Greek astronomy (circa 600-300 BCE):

  • Thales of Miletus (624-546 BCE): Used stellar observations for navigation
  • Meton of Athens (432 BCE): Discovered the 19-year Metonic cycle, reconciling lunar months with solar years
  • Recognized that stellar year differed from seasonal year

Hipparchus and Precession (150 BCE)

Hipparchus of Nicaea (circa 190-120 BCE), one of history's greatest astronomers:

Discovery: By comparing ancient Babylonian star catalogs with his own observations, Hipparchus discovered precession of the equinoxes—the slow westward drift of the vernal equinox against the stellar background

Sidereal measurements: To detect this subtle effect (1 degree per 72 years), Hipparchus needed precise sidereal positions, implicitly understanding the sidereal day concept

Legacy: His work established the difference between:

  • Sidereal year: One orbit relative to stars (365.256363 days)
  • Tropical year: One cycle of seasons (365.242199 days)

The ~20-minute difference between these years arises from precession.

Ptolemy's Almagest (150 CE)

Claudius Ptolemy compiled Greek astronomical knowledge in the Almagest, including:

  • Star catalogs with sidereal positions
  • Mathematical models for predicting stellar rising times
  • Understanding that stars complete one full circuit of the sky slightly faster than the Sun

Though Ptolemy's geocentric model was wrong, his sidereal observations were accurate and useful for centuries.

Islamic Golden Age (800-1400 CE)

Islamic astronomers refined sidereal timekeeping:

Al-Battani (850-929 CE):

  • Measured the tropical year to high precision
  • Created improved star catalogs using sidereal positions

Ulugh Beg (1394-1449 CE):

  • Built the Samarkand Observatory with advanced instruments
  • Produced star catalogs accurate to ~1 arcminute using sidereal measurements

Copernican Revolution (1543)

Nicolaus Copernicus (De revolutionibus orbium coelestium, 1543):

Heliocentric model: Placing the Sun (not Earth) at the center explained the sidereal-solar day difference:

  • Earth rotates on its axis (sidereal day)
  • Earth orbits the Sun (creating solar day difference)
  • The 4-minute discrepancy results from Earth's ~1° daily orbital motion

This was strong evidence for heliocentrism, though it took decades for acceptance.

Kepler's Laws (1609-1619)

Johannes Kepler formulated laws of planetary motion using sidereal periods:

Third Law: The square of a planet's orbital period is proportional to the cube of its orbit's semi-major axis

Application: Calculating planetary positions required precise sidereal reference frames, not solar time

Rise of Telescopic Astronomy (1600s-1700s)

Galileo Galilei (1609):

  • Telescopic observations required tracking celestial objects as they moved across the sky
  • Sidereal time became essential for predicting when objects would be visible

Royal Observatory, Greenwich (1675):

  • Founded by King Charles II with John Flamsteed as first Astronomer Royal
  • Developed accurate sidereal clocks to time stellar transits
  • Greenwich Mean Sidereal Time (GMST) became the astronomical standard

Paris Observatory (1667):

  • French astronomers developed precision pendulum clocks for sidereal timekeeping
  • Cassini family produced detailed planetary observations using sidereal coordinates

Precision Timekeeping (1800s)

19th century: Mechanical sidereal clocks achieved second-level accuracy:

Sidereal clock design: Modified to tick 366.2422/365.2422 times faster than solar clocks (accounting for the extra sidereal day per year)

Observatory operations: Major observatories (Greenwich, Paris, Harvard, Lick, Yerkes) used sidereal clocks as primary timekeeping for scheduling observations

Photography: Long-exposure astrophotography required tracking objects at the sidereal rate to prevent star trailing

IAU Standardization (1900s)

International Astronomical Union (IAU) formalized definitions:

Mean sidereal day: 86,164.0905 seconds (exactly, by definition)

Greenwich Mean Sidereal Time (GMST): Standard sidereal time referenced to Greenwich meridian

Vernal equinox reference: Traditional sidereal time measures Earth's rotation relative to the vernal equinox (intersection of celestial equator and ecliptic)

Modern Era: ICRF (1997-Present)

International Celestial Reference Frame (ICRF):

Problem: The vernal equinox shifts due to precession, making it an imperfect reference

Solution: ICRF uses ~300 distant quasars (billions of light-years away) as fixed reference points

Accuracy: Defines celestial positions to milliarcsecond precision

Atomic time: Sidereal time is now calculated from International Atomic Time (TAI) and Earth orientation parameters measured by Very Long Baseline Interferometry (VLBI)

Modern sidereal clocks: Digital, GPS-synchronized, automatically updated for Earth rotation variations


Common Uses and Applications: hours vs sidereal days

Explore the typical applications for both Hour (imperial/US) and Sidereal Day (imperial/US) to understand their common contexts.

Common Uses for hours

and Applications

1. Time Zones and Global Coordination

The hour is the basis for global time coordination:

  • UTC (Coordinated Universal Time):

    • Global time standard (replaced GMT in 1960s)
    • Based on atomic clocks
    • All time zones expressed as UTC offset
  • Major time zones:

    • EST (Eastern Standard Time): UTC-5
    • CST (Central Standard Time): UTC-6
    • MST (Mountain Standard Time): UTC-7
    • PST (Pacific Standard Time): UTC-8
    • GMT/WET (Western European Time): UTC+0
    • CET (Central European Time): UTC+1
    • IST (Indian Standard Time): UTC+5:30
    • JST (Japan Standard Time): UTC+9
    • AEST (Australian Eastern Standard Time): UTC+10
  • Business hours across zones:

    • "9 AM EST / 6 AM PST" (3-hour difference)
    • International meetings: Finding overlapping work hours
    • "Follow the sun" support: 24-hour coverage across global offices
  • International Date Line:

    • 180° longitude (opposite side of Earth from Prime Meridian)
    • Crossing eastward: Lose one day (skip 24 hours forward)
    • Crossing westward: Gain one day (repeat 24 hours)

2. Scheduling and Calendar Systems

Hours are the building blocks of schedules:

  • Digital calendars:

    • Google Calendar, Outlook: Default 1-hour event blocks
    • Day view: Shows 24 hours (or work hours only)
    • Week view: 168 hours (7 × 24)
    • Buffer time: 15-30 minutes between hour blocks
  • Appointment systems:

    • Medical: 15-minute to 1-hour slots
    • Salon/spa: 30 minutes to 3 hours
    • Professional meetings: 30-minute or 1-hour default
  • Business hours:

    • Standard: 9 AM - 5 PM (8 hours, often called "9-to-5")
    • Extended: 8 AM - 6 PM (10 hours)
    • 24/7 operations: Open all 24 hours, 7 days per week
  • Peak hours vs. off-peak:

    • Rush hour: 7-9 AM, 4-7 PM (commute times)
    • Electricity pricing: Higher rates during peak demand hours
    • Gym: Busiest 5-7 PM (post-work)

3. Astronomy and Earth Science

The hour reflects Earth's rotation:

  • Earth's rotation:

    • 360° in ~24 hours = 15° per hour
    • Solar noon: Sun crosses local meridian (highest point in sky)
    • Local solar time: Based on sun position (varies with longitude)
    • Mean solar time: Averaged over year (accounts for orbital eccentricity)
  • Equation of time:

    • Sundial time vs. clock time can differ by ±16 minutes
    • Due to Earth's elliptical orbit and axial tilt
    • Clock time is averaged over the year
  • Hour angle (astronomy):

    • Angular distance (in hours) from local meridian
    • 1 hour = 15° of celestial sphere rotation
    • Used to determine star positions for telescope pointing
  • Sidereal vs. solar day:

    • Sidereal day: 23 hours 56 minutes 4 seconds (rotation relative to stars)
    • Solar day: 24 hours (rotation relative to sun)
    • Difference: Earth moves along orbit, sun appears to shift ~1° per day

4. Energy and Power Consumption

Energy usage measured in watt-hours:

  • Kilowatt-hour (kWh):

    • Energy used by 1 kilowatt (1,000 watts) running for 1 hour
    • Standard unit for electricity billing
    • Average US home: 30 kWh per day (877 kWh per month)
  • Appliance energy use:

    • 100W light bulb for 10 hours = 1 kWh
    • Electric oven: 2-3 kWh per hour of use
    • Central AC: 3-5 kWh per hour
    • Laptop: 0.05 kWh per hour (50 watts)
    • Refrigerator: 1-2 kWh per day (constant running)
  • Time-of-use pricing:

    • On-peak hours: Higher electricity rates (typically 1-9 PM)
    • Off-peak hours: Lower rates (typically 9 PM - 9 AM)
    • Encourages load shifting to flatten demand curve
  • Battery capacity:

    • Milliamp-hour (mAh) or watt-hour (Wh)
    • Phone battery: 3,000 mAh (11 Wh) ≈ 2-3 hours screen-on time
    • Laptop battery: 50-100 Wh ≈ 5-10 hours use
    • Electric car: 60-100 kWh ≈ 250-400 miles range

5. Healthcare and Medicine

Medical dosing and monitoring uses hours:

  • Medication schedules:

    • "Every 4 hours" = 6 times per day
    • "Every 6 hours" = 4 times per day (QID: quater in die)
    • "Every 8 hours" = 3 times per day (TID: ter in die)
    • "Every 12 hours" = 2 times per day (BID: bis in die)
    • "Every 24 hours" = 1 time per day (QD: quaque die)
  • Drug half-life:

    • Time for drug concentration to decrease by half
    • Acetaminophen: 2-3 hours
    • Caffeine: 5-6 hours
    • Alcohol: Eliminated at ~0.015% BAC per hour
  • Fasting requirements:

    • Pre-surgery: 8-12 hours fasting (NPO: nil per os)
    • Cholesterol test: 9-12 hours fasting
    • Glucose tolerance test: 8-hour overnight fast
  • Labor and delivery:

    • Labor stages measured in hours
    • First stage: 6-12 hours (first baby), 4-8 hours (subsequent)
    • Active labor: Cervical dilation ~1 cm per hour
    • Pushing stage: 1-3 hours (first baby), 15 min-2 hours (subsequent)
  • Medical shift lengths:

    • Resident work-hour restrictions: Max 80 hours per week, max 24-hour shifts
    • Nurse shifts: Typically 8 or 12 hours
    • Concerns about fatigue and patient safety

6. Computing and Technology

Hours measure uptime and usage:

  • Server uptime:

    • "Five nines" (99.999%): 5.26 minutes downtime per year
    • "Four nines" (99.99%): 52.6 minutes downtime per year
    • "Three nines" (99.9%): 8.77 hours downtime per year
    • Measured in hours of continuous operation
  • Data retention:

    • Backup schedules: Hourly, daily, weekly
    • Log rotation: Every 24 hours (daily logs)
    • Cloud storage: Deleted items retained 30 days (720 hours)
  • Usage tracking:

    • Screen time: Hours per day on devices
    • YouTube Creator Studio: Watch hours (4,000 hours past year for monetization)
    • Video games: "Hours played" stat
    • Social media: "You've been using this app for 2 hours today"
  • Rendering and processing:

    • Video rendering: "2 hours to render 10-minute 4K video"
    • 3D modeling: "12-hour render time for scene"
    • Machine learning training: "Training took 100 GPU-hours"

7. Legal and Regulatory

Many laws reference hours:

  • Work hour regulations:

    • Fair Labor Standards Act (FLSA): 40-hour work week threshold
    • Overtime pay: Time-and-a-half for hours beyond 40/week
    • Maximum driving hours: Truckers limited to 11 hours driving per 14-hour window
  • Alcohol service hours:

    • Many states prohibit alcohol sales certain hours (e.g., 2 AM - 6 AM)
    • "Last call": Final hour for ordering drinks
  • Quiet hours:

    • Residential noise ordinances: Often 10 PM - 7 AM
    • College dorms: 11 PM - 8 AM weeknights
  • Statute of limitations:

    • Measured in years, but technically hours
    • Parking tickets: Often 72-hour (3-day) payment window
    • Right to return/refund: 24-48 hour windows

When to Use sidereal days

1. Telescope Pointing and Tracking

Professional observatories use sidereal time to point telescopes:

Right Ascension (RA): Celestial equivalent of longitude, measured in hours of sidereal time (0h to 24h)

Local Sidereal Time (LST): The current RA crossing the meridian

Pointing formula: If LST = 18h 30m, objects with RA ≈ 18h 30m are currently at their highest point (zenith)

Tracking rate: Telescope motors rotate at the sidereal rate (1 rotation per 23h 56m 4s) to follow stars across the sky as Earth rotates

Example:

  • Vega: RA = 18h 37m
  • When LST = 18:37, Vega crosses the meridian (highest in sky)
  • Observer can plan observations when object will be optimally placed

2. Astrophotography

Long-exposure astrophotography requires tracking at the sidereal rate:

Problem: Earth's rotation makes stars trail across the image during long exposures

Solution: Equatorial mounts with sidereal drive motors:

  • Rotate at exactly 1 revolution per sidereal day
  • Keep stars fixed in the camera's field of view
  • Enables exposures of minutes to hours without star trailing

Adjustment: Solar rate ≠ sidereal rate; photographers must use sidereal tracking for stars, solar tracking for Sun/Moon

3. Satellite Orbit Planning

Satellite engineers use sidereal time for orbit design:

Sun-synchronous orbits: Satellites that always cross the equator at the same local solar time

  • Orbital period is chosen to precess at the solar rate, not sidereal rate

Geosynchronous orbits: Satellites that hover over one point on Earth

  • Orbital period = 1 sidereal day (23h 56m 4s)
  • NOT 24 hours! Common misconception.

Molniya orbits: High-eccentricity orbits with period = 0.5 sidereal days for optimal high-latitude coverage

4. Very Long Baseline Interferometry (VLBI)

Radio astronomers use VLBI to achieve ultra-high resolution:

Technique: Combine signals from radio telescopes across continents

Timing requirement: Sidereal time must be synchronized to nanosecond precision across all telescopes

Result: VLBI can resolve features 1,000 times smaller than Hubble Space Telescope (angular resolution ~0.0001 arcseconds)

Application: Measures Earth's rotation variations by observing quasars at precise sidereal times

5. Navigation and Geodesy

Sidereal time is used for precise Earth orientation measurements:

Earth Orientation Parameters (EOPs):

  • Polar motion (wobble of Earth's axis)
  • UT1 (Earth rotation angle, related to Greenwich sidereal time)
  • Length of day variations

GPS accuracy: GPS navigation requires knowing Earth's orientation to ~1 meter precision, necessitating sidereal time corrections

Tidal forces: Moon and Sun create tidal bulges that affect Earth's rotation, causing sidereal day variations at the millisecond level

6. Space Navigation

Spacecraft use sidereal reference frames:

Star trackers: Autonomous spacecraft orientation using star patterns

  • Compare observed stellar positions with catalog
  • Catalog uses sidereal coordinates (RA/Dec)

Interplanetary navigation: Voyager, New Horizons, and other deep-space probes navigate using sidereal reference frames (ICRF)

Mars rovers: Use Martian sidereal time ("sols") for mission planning

  • 1 Mars sol = 24h 39m 35s (Mars rotates slower than Earth)

7. Amateur Astronomy

Amateur astronomers use sidereal time for planning:

Planispheres: Rotating star charts that show which constellations are visible at any given sidereal time and date

Computerized telescopes: GoTo mounts require accurate sidereal time for automatic star finding

Observation logs: Record sidereal time of observations for repeatability


Additional Unit Information

About Hour (h)

How many minutes are in an hour?

Exactly 60 minutes. This comes from the ancient Babylonian base-60 (sexagesimal) number system, which the Egyptians and Greeks adopted for dividing hours. The Latin term "pars minuta prima" (first small part) referred to the first 60-part division of an hour, giving us the modern "minute."

How many seconds are in an hour?

Exactly 3,600 seconds (60 minutes × 60 seconds).

Since 1967, when the second was redefined using atomic caesium-133 clocks, one hour equals:

  • 3,600 atomic seconds
  • 33,074,688,259,200,000 caesium-133 oscillations (33.07 quadrillion)

This makes the hour one of the most precisely defined units of time in existence.

How many hours are in a day?

Exactly 24 hours in one solar day.

Why 24?

  • Ancient Egyptians divided day and night into 12 parts each
  • 12 + 12 = 24-hour cycle
  • Earth rotates 360° in 24 hours = 15° per hour
  • This 15° per hour relationship forms the basis for time zones

Note: A sidereal day (rotation relative to stars) is 23 hours, 56 minutes, 4 seconds, but civil timekeeping uses the 24-hour solar day (rotation relative to the sun).

How many hours are in a year?

8,760 hours in a standard 365-day year.

Calculation: 365 days × 24 hours = 8,760 hours

For a leap year (366 days): 8,784 hours (24 more hours).

Work year: Assuming 40-hour weeks and 52 weeks, a full-time work year is 2,080 work hours (not including holidays or vacation).

Why do we use 12-hour AM/PM instead of 24-hour time?

Historical reasons:

  • Ancient Egyptians and Romans divided day and night into 12 parts each
  • This became culturally entrenched in English-speaking countries
  • 12-hour clocks were simpler to manufacture (only need 1-12 markers)

Why 24-hour format exists:

  • Eliminates AM/PM confusion (especially 12:00 AM vs. 12:00 PM)
  • Preferred in military, aviation, healthcare, computing for clarity
  • Standard in most non-English-speaking countries
  • ISO 8601 international standard uses 24-hour format

Current usage:

  • 12-hour: US, Canada, Australia, Philippines, parts of UK
  • 24-hour: Most of Europe, Asia, Africa, South America, military worldwide

What's the difference between a 24-hour day and Earth's rotation?

Solar day (24 hours): Time for sun to return to same position in sky Sidereal day (23h 56m 4s): Time for Earth to rotate 360° relative to distant stars

Why the difference?

  • Earth orbits the sun while rotating
  • After one 360° rotation, Earth has moved ~1° along its orbit
  • Must rotate an additional ~1° (4 minutes) for sun to return to same position
  • 365.25 solar days per year, but 366.25 sidereal days per year (one extra rotation)

Practical impact:

  • Astronomers use sidereal time for telescope pointing
  • Civil timekeeping uses solar time (24-hour day)
  • Stars rise ~4 minutes earlier each day (sidereal effect)

How do Daylight Saving Time changes work?

Spring forward (start of DST):

  • Clocks advance 1 hour at 2:00 AM → becomes 3:00 AM
  • The hour from 2:00-3:00 AM doesn't exist that day
  • Day has only 23 hours
  • "Lose an hour of sleep"

Fall back (end of DST):

  • Clocks retreat 1 hour at 2:00 AM → becomes 1:00 AM again
  • The hour from 1:00-2:00 AM occurs twice
  • Day has 25 hours
  • "Gain an hour of sleep"

Global variation:

  • Northern Hemisphere: Starts March/April, ends October/November
  • Southern Hemisphere: Starts September/October, ends March/April
  • Many countries don't observe DST (China, Japan, India, most of Africa)
  • Arizona and Hawaii (US states) don't observe DST

Controversy: Growing movement to abolish DST due to health impacts, minimal energy savings.

Why are time zones roughly 15 degrees wide?

Simple math:

  • Earth rotates 360° in 24 hours
  • 360° ÷ 24 hours = 15° per hour
  • Each time zone theoretically spans 15° longitude

Reality is messier:

  • Political boundaries: Zones follow country/state borders
  • China uses single time zone (UTC+8) despite spanning 60° longitude (5 theoretical zones)
  • India uses UTC+5:30 (half-hour offset from standard)
  • Some zones are 30 or 45-minute offsets (Nepal: UTC+5:45)

Practical example:

  • Greenwich, England: 0° longitude (Prime Meridian)
  • Every 15° east: Add 1 hour (15°E = UTC+1, 30°E = UTC+2, etc.)
  • Every 15° west: Subtract 1 hour (15°W = UTC-1, 30°W = UTC-2, etc.)

What is a "billable hour"?

A billable hour is time spent on client work that can be charged to the client, common in legal, consulting, and professional services.

How it works:

  • Professionals track time in increments (often 6 minutes = 0.1 hour)
  • Multiply hours by hourly rate
  • Example: 7.5 billable hours × $300/hour = $2,250

Billing increment examples:

  • 6 minutes = 0.1 hour (common in legal)
  • 15 minutes = 0.25 hour (quarter-hour)
  • Some firms round up to nearest increment

Utilization rate:

  • Target: 1,500-2,000 billable hours per year (out of 2,080 work hours)
  • Remaining time: Non-billable (admin, business development, training)
  • 75-80% utilization considered good in many professions

Ethical concerns:

  • Pressure to inflate hours
  • Some professions moving to flat-fee or value-based pricing

Can an hour ever be longer or shorter than 60 minutes?

In standard timekeeping: No. An hour is always exactly 60 minutes or 3,600 seconds.

Exceptions and special cases:

  1. Leap seconds:

    • Very rarely, an extra second added to last minute of day
    • Makes that minute 61 seconds, but hour still 3,600 seconds overall
    • Last hour of day becomes 3,601 seconds
    • 27 leap seconds added 1972-2016
  2. Daylight Saving Time transitions:

    • "Spring forward": The 2:00 AM hour is skipped (day has 23 hours)
    • "Fall back": The 1:00 AM hour occurs twice (day has 25 hours)
    • This affects the day length, not individual hour length
  3. Historical seasonal hours:

    • Ancient/medieval timekeeping used "unequal hours"
    • Summer daylight hour ≈ 75 minutes
    • Winter daylight hour ≈ 45 minutes
    • Obsolete since mechanical clocks standardized equal hours

Future possibility:

  • If leap seconds abolished, may use "leap hours" every few centuries instead

Why is rush hour called an "hour" when it lasts 2-3 hours?

Etymology: "Rush hour" originally referred to the peak single hour of commuter traffic, but the term stuck even as traffic congestion expanded.

Modern reality:

  • Morning rush: 7:00-9:00 AM (2-3 hours)
  • Evening rush: 4:00-7:00 PM (3-4 hours)
  • Can extend longer in major cities

Related terms:

  • "Peak hours": Broader term for high-traffic periods
  • "Congestion pricing": Charging more during rush hours to reduce traffic
  • "Off-peak": Outside rush hours, usually smoother travel

Cultural note: The term persists despite inaccuracy, similar to how we still say "dial a phone" or "roll down the window."

About Sidereal Day (sidereal day)

How long is a sidereal day in standard time?

Answer: 23 hours, 56 minutes, 4.091 seconds (or 86,164.091 seconds)

This is the time for Earth to rotate exactly 360 degrees relative to distant stars.

Precise value: 1 mean sidereal day = 86,164.0905 seconds

Comparison to solar day:

  • Solar day: 86,400 seconds (24 hours)
  • Sidereal day: 86,164.091 seconds
  • Difference: ~236 seconds shorter (~3 min 56 sec)

Important: This is the mean sidereal day. Earth's actual rotation rate varies slightly (milliseconds) due to tidal forces, atmospheric winds, earthquakes, and core-mantle coupling.

Why is a sidereal day shorter than a solar day?

Answer: Because Earth orbits the Sun while rotating—requiring extra rotation to bring the Sun back to the same sky position

Step-by-step explanation:

  1. Starting point: The Sun is directly overhead (noon)

  2. One sidereal day later (23h 56m 4s): Earth has rotated exactly 360° relative to stars

    • But Earth has also moved ~1° along its orbit around the Sun
    • The Sun now appears slightly east of overhead
  3. Extra rotation needed: Earth must rotate an additional ~1° (taking ~4 minutes) to bring the Sun back overhead

  4. Result: Solar day (noon to noon) = sidereal day + ~4 minutes = 24 hours

Orbital motion causes the difference: Earth moves ~1°/day along its 365-day orbit (360°/365 ≈ 0.986°/day). This ~1° requires ~4 minutes of extra rotation (24 hours / 360° ≈ 4 min/degree).

Consequence: Stars rise ~4 minutes earlier each night relative to solar time, shifting ~2 hours per month, completing a full cycle annually.

Is sidereal time the same everywhere on Earth?

Answer: No—Local Sidereal Time (LST) depends on longitude, just like solar time zones

Key concepts:

Local Sidereal Time (LST): The Right Ascension (RA) currently crossing your local meridian

  • Different at every longitude
  • Changes by 4 minutes for every 1° of longitude

Greenwich Mean Sidereal Time (GMST): Sidereal time at 0° longitude (Greenwich meridian)

  • Global reference point, like GMT/UTC for solar time

Conversion: LST = GMST ± longitude offset

  • Positive (add) for east longitudes
  • Negative (subtract) for west longitudes

Example:

  • GMST = 12:00
  • New York (74°W): LST = 12:00 - (74°/15) = 07:04
  • Tokyo (139.75°E): LST = 12:00 + (139.75°/15) = 21:19

Duration is universal: A sidereal day (23h 56m 4s) is the same length everywhere—only the current sidereal time differs by location.

Do geosynchronous satellites orbit every 24 hours or 23h 56m?

Answer: 23h 56m 4s (one sidereal day)—NOT 24 hours!

This is one of the most common misconceptions about satellites.

The physics: For a satellite to remain above the same point on Earth's surface, it must orbit at Earth's rotational rate relative to the stars, not relative to the Sun.

Why sidereal?

  • Earth rotates 360° in one sidereal day (23h 56m 4s)
  • Satellite must complete 360° orbit in the same time
  • This keeps satellite and ground point aligned relative to the stellar background

If orbit were 24 hours: The satellite would complete one orbit in one solar day, but Earth would have rotated 360° + ~1° (relative to stars) during that time. The satellite would drift ~1° westward per day, completing a full circuit westward in one year!

Geostationary orbit specifics:

  • Altitude: 35,786 km above equator
  • Period: 23h 56m 4.091s (1 sidereal day)
  • Velocity: 3.075 km/s

Common examples: Communications satellites, weather satellites (GOES, Meteosat)

How many sidereal days are in a year?

Answer: Approximately 366.25 sidereal days—one MORE than the number of solar days!

Precise values:

  • Tropical year (season to season): 365.242199 mean solar days
  • Sidereal year (star to star): 365.256363 mean solar days
  • Sidereal days in tropical year: 366.242199 sidereal days

One extra day: There is exactly one more complete rotation relative to stars than we experience sunrises.

Why?

  • Earth makes 366.25 complete 360° rotations relative to stars per year
  • But we experience only 365.25 sunrises because we orbit the Sun
  • One rotation is "used up" by Earth's orbit around the Sun

Thought experiment: Stand on a rotating platform while walking around a lamp. If you walk one complete circle around the lamp (1 orbit), you'll have spun around 2 complete times relative to the room walls (2 rotations): 1 from walking the circle + 1 from the platform spinning.

Can I use a regular clock to tell sidereal time?

Answer: Not directly—sidereal clocks run about 4 minutes faster per day than solar clocks

Clock rate difference:

  • Solar clock: Completes 24 hours in 1 solar day (86,400 seconds)
  • Sidereal clock: Completes 24 sidereal hours in 1 sidereal day (86,164.091 seconds)
  • Rate ratio: 1.00273791 (sidereal clock ticks ~0.27% faster)

Practical result: After one solar day:

  • Solar clock reads: 24:00
  • Sidereal clock reads: 24:03:56 (3 min 56 sec ahead)

Modern solutions:

  • Sidereal clock apps: Smartphone apps calculate LST from GPS location and atomic time
  • Planetarium software: Stellarium, SkySafari show current LST
  • Observatory systems: Automated telescopes use GPS-synchronized sidereal clocks

Historical: Mechanical sidereal clocks used gear ratios of 366.2422/365.2422 to run at the correct rate

You can calculate: LST from solar time using formulas, but it's complex (requires Julian Date, orbital mechanics)

Why do astronomers use sidereal time instead of solar time?

Answer: Because celestial objects return to the same position every sidereal day, not solar day

Astronomical reason:

Stars and galaxies are so distant they appear "fixed" in the sky:

  • A star at RA = 18h 30m crosses the meridian at LST = 18:30 every sidereal day
  • Predictable, repeatable observations

If using solar time: Stars would cross the meridian ~4 minutes earlier each night, requiring daily recalculation of observation windows

Practical advantages:

1. Simple telescope pointing:

  • Object's RA directly tells you when it's overhead (LST = RA)
  • No date-dependent calculations needed

2. Repeatable observations:

  • "Observe target at LST = 22:00" means the same sky position regardless of date

3. Right Ascension coordinate system:

  • Celestial longitude measured in hours/minutes of sidereal time (0h to 24h)
  • Aligns naturally with Earth's rotation

4. Tracking rate:

  • Telescopes track at sidereal rate (1 revolution per 23h 56m 4s)
  • Keeps stars fixed in the field of view

Historical: Before computers, sidereal time made astronomical calculations much simpler

What is the difference between a sidereal day and a sidereal year?

Answer: A sidereal day measures Earth's rotation; a sidereal year measures Earth's orbit

Sidereal Day:

  • Definition: Time for Earth to rotate 360° on its axis relative to stars
  • Duration: 23h 56m 4.091s (86,164.091 seconds)
  • Reference: Distant "fixed" stars
  • Use: Telescope tracking, astronomy observations

Sidereal Year:

  • Definition: Time for Earth to orbit 360° around the Sun relative to stars
  • Duration: 365.256363 days (365d 6h 9m 9s)
  • Reference: Position relative to distant stars (not seasons)
  • Use: Orbital mechanics, planetary astronomy

Key distinction:

  • Day = rotation (Earth spinning)
  • Year = revolution (Earth orbiting)

Tropical vs. Sidereal Year:

  • Tropical year: 365.242199 days (season to season, used for calendars)
  • Sidereal year: 365.256363 days (star to star)
  • Difference: ~20 minutes, caused by precession of Earth's axis

The 20-minute precession effect: Earth's axis wobbles with a 26,000-year period, causing the vernal equinox to shift ~50 arcseconds/year westward against the stellar background. This makes the tropical year (equinox to equinox) slightly shorter than the sidereal year (star to star).

Does the Moon have a sidereal day?

Answer: Yes—the Moon's sidereal day is 27.322 Earth days, but it's tidally locked to Earth

Moon's sidereal rotation: Time for Moon to rotate 360° relative to stars = 27.322 days

Tidal locking: The Moon's rotation period equals its orbital period around Earth (both 27.322 days)

Consequence: The same face of the Moon always points toward Earth

  • We only see ~59% of Moon's surface from Earth (libration allows slight wobbling)
  • The "far side" never faces Earth

Moon's "solar day" (lunar day):

  • Time from sunrise to sunrise on Moon's surface: 29.531 Earth days
  • Different from Moon's sidereal day (27.322 days) for the same reason Earth's solar day differs from sidereal day
  • Moon orbits Earth while rotating, requiring extra rotation to bring the Sun back to the same position

Lunar missions: Apollo missions and rovers used "lunar days" for mission planning—each day-night cycle lasts ~29.5 Earth days (2 weeks daylight, 2 weeks night)

How is sidereal time measured today?

Answer: Using atomic clocks, GPS, and Very Long Baseline Interferometry (VLBI) observations of distant quasars

Modern measurement system:

1. International Atomic Time (TAI):

  • Network of ~450 atomic clocks worldwide
  • Defines the second with nanosecond precision
  • Provides base timescale

2. UT1 (Universal Time):

  • Earth's rotation angle (actual rotation measured continuously)
  • Monitored by VLBI observations of quasars

3. VLBI technique:

  • Radio telescopes across continents simultaneously observe distant quasars
  • Time differences reveal Earth's exact orientation
  • Accuracy: ~0.1 milliseconds (0.005 arcseconds rotation)

4. ICRF (International Celestial Reference Frame):

  • Defines "fixed" stellar background using ~300 quasars billions of light-years away
  • Replaces older vernal equinox reference (which shifts due to precession)

5. GPS satellites:

  • Amateur astronomers and observatories use GPS for accurate time and location
  • Software calculates LST from UTC, GPS coordinates, and Earth orientation parameters

Calculation chain:

  1. Atomic clocks provide UTC
  2. Earth orientation parameters (EOP) give UT1
  3. Sidereal time formulas convert UT1 → GMST
  4. Longitude correction gives LST

Accuracy: Modern systems know Earth's orientation to ~1 centimeter (as a position on Earth's surface), requiring sidereal time precision of ~0.001 seconds

Why so complex? Earth's rotation is not uniform:

  • Tidal forces (Moon/Sun) slow rotation by ~2.3 ms/century
  • Atmospheric winds cause daily variations (milliseconds)
  • Earthquakes can shift rotation by microseconds
  • Core-mantle coupling affects long-term drift

Continuous monitoring ensures astronomical observations remain accurate.

Will sidereal time ever be replaced by something else?

Answer: Unlikely—it's fundamental to astronomy, tied directly to Earth's rotation and stellar positions

Why sidereal time persists:

1. Physical basis: Directly tied to Earth's rotation relative to the universe

  • Not an arbitrary human convention like time zones
  • Essential for understanding celestial mechanics

2. Coordinate system: Right Ascension (celestial longitude) is measured in sidereal hours

  • All star catalogs, telescope systems, and astronomical databases use RA/Dec
  • Replacing it would require re-cataloging billions of objects

3. Telescope tracking: All telescope mounts track at the sidereal rate

  • Mechanically and electronically built into equipment
  • Solar tracking is used only for Sun/Moon

4. International standards: IAU, observatories, space agencies globally use sidereal time

  • Standardized formulas and software

5. No alternative needed: Sidereal time does its job perfectly for astronomy

Evolution, not replacement:

  • Old reference: Vernal equinox (shifts due to precession)
  • New reference: ICRF quasars (effectively fixed)
  • Future: Increasingly precise atomic timescales and Earth rotation monitoring

Non-astronomical contexts: Civil society will continue using solar time (UTC) for daily life—there's no need for most people to know sidereal time

Conclusion: Sidereal time is here to stay as long as humans do astronomy from Earth. Even space-based observatories use sidereal coordinate systems for consistency with ground observations.


Conversion Table: Hour to Sidereal Day

Hour (h)Sidereal Day (sidereal day)
0.50.021
10.042
1.50.063
20.084
50.209
100.418
251.045
502.089
1004.178
25010.445
50020.89
1,00041.781

People Also Ask

How do I convert Hour to Sidereal Day?

To convert Hour to Sidereal Day, enter the value in Hour in the calculator above. The conversion will happen automatically. Use our free online converter for instant and accurate results. You can also visit our time converter page to convert between other units in this category.

Learn more →

What is the conversion factor from Hour to Sidereal Day?

The conversion factor depends on the specific relationship between Hour and Sidereal Day. You can find the exact conversion formula and factor on this page. Our calculator handles all calculations automatically. See the conversion table above for common values.

Can I convert Sidereal Day back to Hour?

Yes! You can easily convert Sidereal Day back to Hour by using the swap button (⇌) in the calculator above, or by visiting our Sidereal Day to Hour converter page. You can also explore other time conversions on our category page.

Learn more →

What are common uses for Hour and Sidereal Day?

Hour and Sidereal Day are both standard units used in time measurements. They are commonly used in various applications including engineering, construction, cooking, and scientific research. Browse our time converter for more conversion options.

For more time conversion questions, visit our FAQ page or explore our conversion guides.

All Time Conversions

Second to MinuteSecond to HourSecond to DaySecond to WeekSecond to MonthSecond to YearSecond to MillisecondSecond to MicrosecondSecond to NanosecondSecond to DecadeSecond to CenturySecond to MillenniumSecond to FortnightSecond to Planck TimeSecond to ShakeSecond to Sidereal DaySecond to Sidereal YearMinute to SecondMinute to HourMinute to DayMinute to WeekMinute to MonthMinute to YearMinute to MillisecondMinute to MicrosecondMinute to NanosecondMinute to DecadeMinute to CenturyMinute to MillenniumMinute to FortnightMinute to Planck TimeMinute to ShakeMinute to Sidereal DayMinute to Sidereal YearHour to SecondHour to MinuteHour to DayHour to WeekHour to MonthHour to YearHour to MillisecondHour to MicrosecondHour to NanosecondHour to DecadeHour to CenturyHour to MillenniumHour to FortnightHour to Planck TimeHour to ShakeHour to Sidereal YearDay to SecondDay to MinuteDay to HourDay to WeekDay to MonthDay to YearDay to MillisecondDay to MicrosecondDay to NanosecondDay to DecadeDay to CenturyDay to MillenniumDay to FortnightDay to Planck TimeDay to ShakeDay to Sidereal DayDay to Sidereal YearWeek to SecondWeek to MinuteWeek to HourWeek to DayWeek to MonthWeek to YearWeek to MillisecondWeek to MicrosecondWeek to NanosecondWeek to DecadeWeek to CenturyWeek to MillenniumWeek to FortnightWeek to Planck TimeWeek to ShakeWeek to Sidereal DayWeek to Sidereal YearMonth to SecondMonth to MinuteMonth to HourMonth to DayMonth to WeekMonth to YearMonth to MillisecondMonth to MicrosecondMonth to NanosecondMonth to DecadeMonth to CenturyMonth to MillenniumMonth to FortnightMonth to Planck TimeMonth to ShakeMonth to Sidereal DayMonth to Sidereal YearYear to SecondYear to MinuteYear to HourYear to DayYear to WeekYear to MonthYear to MillisecondYear to MicrosecondYear to NanosecondYear to DecadeYear to CenturyYear to MillenniumYear to FortnightYear to Planck TimeYear to ShakeYear to Sidereal DayYear to Sidereal YearMillisecond to SecondMillisecond to Minute

Verified Against Authority Standards

All conversion formulas have been verified against international standards and authoritative sources to ensure maximum accuracy and reliability.

NIST Time and Frequency

National Institute of Standards and TechnologyOfficial time standards and definitions

BIPM Second Definition

Bureau International des Poids et MesuresDefinition of the SI base unit for time

Last verified: December 3, 2025