Minute to Second Converter

Convert minutes to seconds with our free online time converter.

Quick Answer

1 Minute = 60 seconds

Formula: Minute × conversion factor = Second

Use the calculator below for instant, accurate conversions.

Our Accuracy Guarantee

All conversion formulas on UnitsConverter.io have been verified against NIST (National Institute of Standards and Technology) guidelines and international SI standards. Our calculations are accurate to 10 decimal places for standard conversions and use arbitrary precision arithmetic for astronomical units.

Last verified: December 2025Reviewed by: Sam Mathew, Software Engineer

Minute to Second Calculator

How to Use the Minute to Second Calculator:

  1. Enter the value you want to convert in the 'From' field (Minute).
  2. The converted value in Second will appear automatically in the 'To' field.
  3. Use the dropdown menus to select different units within the Time category.
  4. Click the swap button (⇌) to reverse the conversion direction.
Share:

How to Convert Minute to Second: Step-by-Step Guide

Converting Minute to Second involves multiplying the value by a specific conversion factor, as shown in the formula below.

Formula:

1 Minute = 60 seconds

Example Calculation:

Convert 60 minutes: 60 × 60 = 3600 seconds

Disclaimer: For Reference Only

These conversion results are provided for informational purposes only. While we strive for accuracy, we make no guarantees regarding the precision of these results, especially for conversions involving extremely large or small numbers which may be subject to the inherent limitations of standard computer floating-point arithmetic.

Not for professional use. Results should be verified before use in any critical application. View our Terms of Service for more information.

What is a Minute and a Second?

The minute (symbol: min) is a unit of time equal to 60 seconds or 1/60 of an hour (exactly 0.016̄ hours, or approximately 0.0167 hours).

Official SI-derived definition: Since the second was redefined atomically in 1967, one minute equals exactly 60 seconds, where each second is the duration of 9,192,631,770 periods of radiation from caesium-133 atoms. Therefore:

  • 1 minute = 60 × 9,192,631,770 = 551,558,906,200 caesium-133 oscillations

Practical conversions:

  • 1 minute = 60 seconds (exact)
  • 1 minute = 0.016666... hours (1/60 hr, exact)
  • 1 hour = 60 minutes (exact)
  • 1 day = 1,440 minutes (24 × 60)
  • 1 week = 10,080 minutes (7 × 24 × 60)
  • 1 year (365 days) = 525,600 minutes (memorably featured in the musical Rent)

The minute is not an SI base unit, but it is accepted for use with the SI alongside hours, days, and other traditional time units due to its universal cultural importance and practical utility.

Why 60?

The choice of 60 comes from ancient Babylonian sexagesimal (base-60) mathematics, developed around 3000 BCE. The Babylonians chose 60 because it's highly divisible:

  • Factors of 60: 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60 (12 factors!)
  • This makes fractions like 1/2 (30 min), 1/3 (20 min), 1/4 (15 min), 1/5 (12 min), 1/6 (10 min) all whole numbers
  • Contrast with decimal: 100 only has factors 1, 2, 4, 5, 10, 20, 25, 50, 100 (9 factors, and divisions like 1/3 = 33.33...)

This mathematical convenience made base-60 ideal for astronomy, geometry, and timekeeping—fields requiring frequent division. The system persists today in our 60-minute hours, 60-second minutes, and 360-degree circles (6 × 60).

What Is a Second?

The second (symbol: s) is the SI base unit of time, defined with extraordinary precision using atomic physics rather than astronomical observations.

Official SI definition (since 1967): The second is the duration of 9,192,631,770 periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the caesium-133 atom at absolute zero temperature and at rest.

In simpler terms:

  • Caesium-133 atoms oscillate at a precise frequency when energized
  • One second equals exactly 9,192,631,770 of these oscillations
  • This provides a natural, unchanging standard independent of Earth's rotation

Why this matters: This atomic definition provides accuracy to better than 1 second in 100 million years for modern atomic clocks, enabling:

  • GPS navigation (accuracy requires nanosecond precision)
  • Global telecommunications synchronization
  • Scientific experiments requiring extreme precision
  • Financial transaction timestamps
  • Internet infrastructure coordination

Second vs. Other Time Units

Subdivisions of the second:

  • 1 decisecond (ds) = 0.1 s = 10⁻¹ s (rarely used)
  • 1 centisecond (cs) = 0.01 s = 10⁻² s (stopwatch hundredths)
  • 1 millisecond (ms) = 0.001 s = 10⁻³ s (computer operations)
  • 1 microsecond (μs) = 0.000001 s = 10⁻⁶ s (electronics, photography)
  • 1 nanosecond (ns) = 0.000000001 s = 10⁻⁹ s (computer processors, GPS)
  • 1 picosecond (ps) = 10⁻¹² s (laser physics, molecular vibrations)
  • 1 femtosecond (fs) = 10⁻¹⁵ s (ultrafast lasers, chemical reactions)

Multiples of the second:

  • 60 seconds = 1 minute
  • 3,600 seconds = 1 hour
  • 86,400 seconds = 1 day
  • 604,800 seconds = 1 week
  • 31,536,000 seconds = 1 year (365 days)
  • 31,557,600 seconds = 1 Julian year (365.25 days)

Note: The Minute is part of the imperial/US customary system, primarily used in the US, UK, and Canada for everyday measurements. The Second belongs to the imperial/US customary system.

History of the Minute and Second

of the Minute

Ancient Babylonian Origins (c. 3000 BCE)

The foundation of the minute lies in the Sumerian and Babylonian sexagesimal (base-60) number system developed in ancient Mesopotamia around 3000 BCE. The Babylonians used this system for:

  1. Astronomical calculations: Dividing the celestial sphere and tracking planetary movements
  2. Geometric measurements: Dividing circles into 360 degrees (6 × 60)
  3. Mathematical computations: Facilitating complex fractions and divisions
  4. Calendar systems: Organizing time into convenient subdivisions

Cuneiform tablets from this era show sophisticated astronomical observations recorded using base-60 divisions, laying groundwork for the eventual minute.

Greek Astronomical Adoption (150 CE)

The ancient Greeks, particularly Claudius Ptolemy (c. 100-170 CE), formalized the division of hours and degrees into 60 parts in his astronomical treatise Almagest. Ptolemy used Latin terminology inherited from earlier traditions:

  • "pars minuta prima" (first minute/small part) = 1/60 of a degree or hour → modern minute
  • "pars minuta secunda" (second minute/small part) = 1/60 of a minute = 1/3600 of a degree/hour → modern second

These terms were primarily used for angular measurement in astronomy and navigation (describing positions of stars and planets), not yet for practical daily timekeeping.

Medieval Islamic and European Transmission (800-1300 CE)

During the Islamic Golden Age (8th-13th centuries), Arab astronomers and mathematicians preserved and expanded on Greek astronomical texts, continuing to use the 60-part division system.

When European scholars translated Arabic astronomical manuscripts in the 12th and 13th centuries (particularly at translation centers in Toledo, Spain, and Sicily), they reintroduced the Latin terms "pars minuta prima" and "pars minuta secunda" to European scholarship.

However, these remained primarily theoretical and astronomical units. Practical timekeeping in medieval Europe relied on:

  • Sundials (showing hours)
  • Water clocks (clepsydrae)
  • Candle clocks (burning time)
  • Church bells marking canonical hours (Matins, Prime, Terce, Sext, None, Vespers, Compline)

None of these devices tracked minutes—they were too imprecise, and daily life didn't require such granularity.

Mechanical Clocks Emerge—But No Minute Hands (1300s)

The first mechanical clocks appeared in Europe around 1280-1300, installed in church towers and public buildings. Early examples include:

  • Salisbury Cathedral clock (England, c. 1386) - still running, one of the oldest working clocks
  • Wells Cathedral clock (England, c. 1390)
  • Prague Astronomical Clock (Czech Republic, 1410)

Crucially, these early clocks had only an HOUR hand. They were too inaccurate (losing or gaining 15-30 minutes per day) to justify displaying minutes. The concept of "being on time" to the minute was essentially meaningless when clocks could drift that much daily.

Pendulum Revolution: Minutes Become Meaningful (1656)

The transformative moment for minute-level timekeeping came with Christiaan Huygens' invention of the pendulum clock in 1656. This invention improved timekeeping accuracy from errors of 15 minutes per day to less than 15 seconds per day—a roughly 60-fold improvement.

Why pendulums revolutionized accuracy:

  • A pendulum's swing period depends only on its length and gravity (Galileo's discovery, 1602)
  • Length is constant → period is constant → highly regular "tick"
  • Formula: Period = 2π√(L/g), where L = length, g = gravitational acceleration
  • A 1-meter pendulum has a period of approximately 2 seconds—perfect for timekeeping

With this accuracy, displaying minutes became both practical and necessary. Clockmakers began adding minute hands to clock faces around 1660-1680.

Minute Hands Become Standard (1670-1750)

By the late 17th century:

  • 1670s: Quality clocks routinely featured minute hands
  • 1680s: Balance spring invention (Huygens and Robert Hooke) further improved accuracy, enabling portable watches to track minutes
  • 1700s: Minute display became universal on both public clocks and personal timepieces
  • 1761: John Harrison's H4 marine chronometer achieved extraordinary accuracy (losing only 5 seconds on a 81-day voyage), revolutionizing navigation

The minute transformed from an astronomical abstraction to a practical daily measurement, changing social organization fundamentally.

Societal Impact: The "Minute Culture" (1800s)

The 19th century saw the rise of minute-precise scheduling, driven by:

  1. Railroad timetables (1840s onward):

    • Trains required synchronized schedules to prevent collisions
    • Railway time standardized clocks across regions
    • Timetables specified arrivals/departures to the minute
    • This drove development of time zones and standard time
  2. Factory work and "time discipline" (Industrial Revolution):

    • Factory shifts started at precise times (e.g., 7:00 AM, not "dawn")
    • Workers punched time clocks tracking arrival to the minute
    • The concept of "being late" became economically significant
    • Frederick Winslow Taylor's "scientific management" (1880s-1910s) measured work tasks in minutes and seconds
  3. Urban life coordination:

    • Meeting times specified to the minute
    • Public transportation schedules
    • School bell systems marking class periods

This represented a profound cultural shift: pre-industrial societies organized time around seasonal cycles, sunlight, and approximate "hours." Industrial society required minute-level coordination of human activity.

Atomic Age: Minutes Defined by Seconds (1967-Present)

When the second was redefined in 1967 based on caesium-133 atomic oscillations (9,192,631,770 cycles = 1 second), the minute automatically inherited this precision:

1 minute = exactly 60 × 9,192,631,770 caesium oscillations = 551,558,906,200 caesium oscillations

Modern atomic clocks maintain this definition with extraordinary stability, losing less than 1 second in 100 million years. This means the minute is now defined with sub-nanosecond precision, far beyond any practical human need but essential for:

  • GPS systems (requiring nanosecond synchronization)
  • Financial trading (high-frequency trading in microseconds)
  • Telecommunications (network synchronization)
  • Scientific experiments (particle physics, gravitational wave detection)

The "525,600 Minutes" Cultural Moment (1996)

In 1996, the musical Rent by Jonathan Larson opened on Broadway, featuring the iconic song "Seasons of Love," which begins:

"Five hundred twenty-five thousand, six hundred minutes... How do you measure, measure a year?"

This number—525,600 minutes = 365 days × 24 hours × 60 minutes—became a cultural touchstone, highlighting the minute as a unit for measuring the passage of life itself, not just scheduling appointments.

Ancient Origins: Babylonian Mathematics (3000 BCE)

The division of time into units of 60 has roots in ancient Babylonian sexagesimal (base-60) mathematics:

Why base-60?

  • Highly divisible: 60 has divisors 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60
  • Finger counting: Babylonians counted 12 finger segments (phalanges) on one hand using the thumb, repeated 5 times for the other hand (12 × 5 = 60)
  • Astronomical convenience: 360 days approximated the year (6 × 60), aligning with the 360-degree circle

Time divisions established:

  • 1 day = 24 hours (2 × 12)
  • 1 hour = 60 minutes
  • 1 minute = 60 seconds

This system spread through ancient Egypt, Greece, and Rome, persisting for over 4,000 years.

Medieval Development: Mechanical Clocks (1200s-1600s)

The word "second" derives from Medieval Latin "pars minuta secunda" meaning "second minute part" (the second division of the hour):

  • First division: Hour divided into 60 "pars minuta prima" (first minute parts) = minutes
  • Second division: Minute divided into 60 "pars minuta secunda" (second minute parts) = seconds

Early mechanical clocks (1200s-1300s):

  • Displayed only hours, no minute or second hands
  • Too imprecise to measure seconds accurately
  • Driven by falling weights and escapement mechanisms

Pendulum revolution (1656):

  • Christiaan Huygens invented the pendulum clock
  • First clocks accurate enough to measure seconds reliably
  • Pendulum period provided regular "tick" for second counting
  • Accuracy improved from 15 minutes/day to 15 seconds/day

Marine chronometers (1700s):

  • John Harrison developed precise clocks for navigation (1730s-1760s)
  • Accurate timekeeping enabled longitude determination at sea
  • Precision to within 1 second per day

Astronomical Definition: Mean Solar Second (1832-1967)

In 1832, the second was formally defined as 1/86,400 of a mean solar day:

  • Mean solar day: Average length of a solar day over a year (accounts for Earth's elliptical orbit)
  • 86,400 seconds: 24 hours × 60 minutes × 60 seconds

Problems with astronomical definition:

  1. Earth's rotation is irregular: Tidal friction gradually slows rotation (~2 milliseconds per century)
  2. Seasonal variations: Earth's orbit affects day length by milliseconds
  3. Unpredictable fluctuations: Earthquakes, atmospheric changes affect rotation
  4. Increasing demand for precision: Radio, telecommunications, science required better accuracy

By the 1950s, astronomical observations showed the "second" was not constant—the length varied by parts per million depending on the era.

Atomic Revolution: Caesium Standard (1955-1967)

1955 - First caesium atomic clock:

  • Louis Essen and Jack Parry at UK's National Physical Laboratory built the first caesium atomic clock
  • Demonstrated caesium-133 atoms oscillate at precisely 9,192,631,770 Hz
  • Accuracy: 1 second in 300 years (far exceeding astronomical clocks)

1967 - Official redefinition: The 13th General Conference on Weights and Measures (CGPM) redefined the second:

"The second is the duration of 9,192,631,770 periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the caesium-133 atom."

Why caesium-133?

  • Atomic property: Transition frequency is a fundamental constant of nature
  • Highly stable: Unaffected by temperature, pressure, or electromagnetic fields
  • Reproducible: Any caesium-133 atom behaves identically
  • Practical: Relatively easy to construct atomic clocks using caesium

Impact:

  • Timekeeping became independent of Earth's rotation
  • Precision improved from parts per million to parts per trillion
  • Enabled GPS, internet synchronization, telecommunications, and modern science

Modern Atomic Clocks (1990s-Present)

Caesium fountain clocks (1990s):

  • Atoms launched upward in "fountain" configuration
  • Gravity slows atoms, allowing longer measurement time
  • Accuracy: 1 second in 100 million years

Optical lattice clocks (2000s-2020s):

  • Use strontium or ytterbium atoms instead of caesium
  • Operate at optical frequencies (100,000× higher than caesium)
  • Accuracy: 1 second in 15 billion years (age of the universe!)
  • May redefine the second in future decades

Applications requiring atomic precision:

  • GPS satellites: Nanosecond errors cause position errors of ~1 foot
  • High-frequency trading: Microsecond timestamps for financial transactions
  • Telecommunications: Synchronizing cell towers and internet infrastructure
  • Science: Detecting gravitational waves, testing relativity, fundamental physics

Leap Seconds: Reconciling Atomic and Astronomical Time

The problem:

  • Atomic time (TAI): Runs at constant rate based on caesium clocks
  • Earth rotation (UT1): Slows gradually due to tidal friction
  • Difference: ~2 milliseconds per day (accumulates ~1 second every 18 months)

Solution: Leap seconds (since 1972):

  • Coordinated Universal Time (UTC) = atomic time adjusted to stay within 0.9 seconds of Earth rotation
  • Leap second: Extra second added (or removed) on June 30 or December 31
  • 27 leap seconds added between 1972-2016 (none since 2016)

Controversy:

  • Leap seconds cause problems for computer systems, GPS, networks
  • Debate ongoing about abolishing leap seconds in favor of pure atomic time
  • Possible change may occur in the 2030s

Common Uses and Applications: minutes vs seconds

Explore the typical applications for both Minute (imperial/US) and Second (imperial/US) to understand their common contexts.

Common Uses for minutes

and Applications

1. Time Management and Productivity

The minute is the fundamental unit for personal and professional time management:

  • Pomodoro Technique: Work in 25-minute focused sessions, followed by 5-minute breaks
  • Time blocking: Schedule day in 15-, 30-, or 60-minute blocks
  • Task estimation: "This report will take 45 minutes"
  • Billable hours: Professional services (lawyers, consultants) often bill in 6-minute increments (0.1 hour)
  • Timesheet tracking: Many systems track work time to the minute

Digital tools: Calendar apps (Google Calendar, Outlook), time tracking software (Toggl, RescueTime), and project management platforms (Asana, Monday.com) all operate on minute-based scheduling.

2. Scheduling and Appointments

Minutes enable precise coordination of activities:

  • Appointment times: "Dentist at 3:15 PM" (hours and minutes)
  • Event start times: "Meeting begins at 10:30 AM sharp"
  • Transit timetables: "Train departs at 8:47 AM"
  • Reservation systems: OpenTable shows "5:30 PM" or "8:45 PM" slots
  • Class schedules: "Period 3: 10:25-11:15 AM" (50-minute period)

Buffer times: Professional schedulers often include 5-10 minute buffers between appointments to prevent domino-effect delays.

3. Sports and Athletic Competition

Many sports use minutes for game structure and performance measurement:

  • Game periods:

    • Soccer: Two 45-minute halves
    • Basketball (NBA): Four 12-minute quarters = 48 minutes total
    • Basketball (NCAA): Two 20-minute halves = 40 minutes
    • Hockey: Three 20-minute periods
    • Rugby: Two 40-minute halves
  • Penalties and suspensions:

    • Hockey penalty box: 2-minute, 4-minute, or 5-minute penalties
    • Soccer yellow card: 10-minute sin bin (trial rule in some leagues)
  • Running performance:

    • Mile time: 4-6 minutes (recreational), under 4 minutes (elite)
    • 5K time: 15-30 minutes (recreational), 13-15 minutes (competitive)
    • Marathon pace: Expressed as minutes per mile/km
  • Timeouts:

    • NBA timeout: 75 seconds (1.25 minutes) or 30 seconds
    • NFL timeout: Each team gets three per half
    • College football: 1-minute timeouts

4. Navigation and Geography

Beyond time measurement, "minute" has a distinct meaning in navigation:

Arcminute (minute of arc):

  • Symbol: ′ (prime symbol)
  • 1 arcminute = 1/60 of a degree of angle
  • 1 degree = 60 arcminutes = 60′
  • 1 arcminute = 60 arcseconds = 60″

Latitude and longitude:

  • Geographic coordinates: 40°45′30″N, 73°59′00″W (New York City)
  • Reads as: "40 degrees, 45 minutes, 30 seconds North; 73 degrees, 59 minutes, 0 seconds West"

Nautical mile:

  • 1 nautical mile = 1 arcminute of latitude (approximately 1,852 meters)
  • This makes ocean navigation calculations elegant: traveling 60 nautical miles north changes your latitude by 1 degree

Map precision:

  • 1 arcminute of latitude ≈ 1.85 km (1.15 miles)
  • 1 arcminute of longitude ≈ 1.85 km at equator (decreases toward poles)
  • Modern GPS coordinates often express minutes with decimal precision: 40°45.5′N

5. Digital Timekeeping and Computing

Computers and digital devices track time in minutes (and smaller units):

  • System clocks: Display hours:minutes (14:35) or hours:minutes:seconds (14:35:47)
  • File timestamps: Modified time recorded as YYYY-MM-DD HH:MM:SS
  • Cron jobs: Unix/Linux scheduled tasks use minute-level specification (0-59)
  • Session timeouts: "Session will expire in 5 minutes of inactivity"
  • Auto-save intervals: Microsoft Word auto-saves every 10 minutes (default)
  • Video timestamps: YouTube shows 5:23 (5 minutes, 23 seconds)
  • Countdown timers: Online cooking timers, exam clocks, auction endings

6. Aviation and Air Travel

The aviation industry relies heavily on minute-precise timing:

  • Flight schedules: Departure 10:25 AM, arrival 1:47 PM (all times to the minute)
  • Flight duration: "Flight time: 2 hours 34 minutes"
  • Boarding times: "Boarding begins 30 minutes before departure"
  • Gate changes: "Gate closes 10 minutes before departure"
  • Air traffic control: Separation requirements measured in minutes between aircraft
  • Fuel planning: Reserve fuel calculated for 30-45 minutes of additional flight time

7. Education and Testing

Academic settings structure learning and assessment by minutes:

  • Class periods:

    • Elementary school: 45-60 minute periods
    • High school: 50-minute periods (traditional) or 90-minute blocks
    • University lecture: 50 minutes ("hour" classes), 80 minutes (longer sessions)
    • "10-minute break" between classes
  • Standardized tests:

    • SAT Reading section: 65 minutes
    • SAT Math (calculator): 55 minutes
    • ACT Science: 35 minutes
    • GRE Verbal section: 30 minutes
    • LSAT Logical Reasoning: 35 minutes per section
  • Test-taking strategy: Students allocate time per question (e.g., "100 questions in 60 minutes = 36 seconds per question")

8. Parking and Paid Time

Many services charge based on minute increments:

  • Parking meters:

    • 15-minute minimum in some cities
    • $2 per hour = $0.50 per 15 minutes
    • Digital meters show minutes remaining
  • Bike/scooter sharing:

    • Lime, Bird, Citibike: Charge per minute (e.g., $0.39/min)
    • "Unlock fee + per-minute rate"
  • Phone plans (historical):

    • Pre-smartphone era: Plans sold as "450 minutes per month"
    • Long-distance charges: "5¢ per minute"
    • Modern shift: Unlimited minutes, data caps instead
  • Professional services:

    • Legal billing: Often in 6-minute increments (1/10 hour)
    • Therapy sessions: 50-minute "hour" (allows 10 minutes for notes)
    • Consulting rates: "$200/hour" = $3.33/minute

9. Emergency Services

Response time measured in minutes can mean life or death:

  • Response time targets:

    • Ambulance (urban): 8 minutes average target
    • Fire department: 4-minute turnout time (from alarm to truck departure)
    • Police: Varies widely, 5-10 minutes for priority calls
  • Emergency medical guidelines:

    • Start CPR within 1 minute of cardiac arrest recognition
    • Defibrillation within 3-5 minutes of cardiac arrest improves survival
    • Every 1-minute delay in defibrillation decreases survival by 7-10%
    • "Time is tissue" in stroke care: Every minute counts
  • 911 call processing:

    • Average call duration: 2-3 minutes
    • Location identification: Should be under 30 seconds
    • "Stay on the line" until help arrives

When to Use seconds

The second is the universal foundation for all time measurement in modern civilization:

1. Timekeeping and Clocks

Everyday timekeeping:

  • Wristwatches and clocks display hours, minutes, seconds
  • Smartphones synchronize to atomic time via network
  • Wall clocks, alarm clocks, digital displays
  • Public time displays (train stations, airports, town squares)

Precision timekeeping:

  • Atomic clocks: Caesium, rubidium, hydrogen maser clocks
  • GPS satellites: Carry atomic clocks for navigation
  • Scientific facilities: National metrology institutes maintain primary time standards
  • Network Time Protocol (NTP): Synchronizes computer clocks to microsecond accuracy

2. Scientific Research and Experiments

Physics experiments:

  • Measuring particle lifetimes (nanoseconds to picoseconds)
  • Timing light pulses in lasers (femtoseconds)
  • Gravitational wave detection (millisecond timing precision)
  • Quantum mechanics experiments (Planck time: 10⁻⁴⁴ seconds)

Chemistry:

  • Reaction kinetics and rates
  • Spectroscopy (measuring light absorption/emission frequencies)
  • Femtochemistry (bond breaking/forming at femtosecond scale)

Biology:

  • Neural signal timing (milliseconds)
  • Cellular processes (seconds to hours)
  • Ecological cycles (days, seasons, years measured in seconds)

3. Computing and Digital Systems

Processor operations:

  • CPU clock speeds measured in GHz (billions of cycles/second)
  • Instruction execution times (nanoseconds)
  • Cache latency, memory access times

Software and programming:

  • Timestamps (Unix time: seconds since January 1, 1970)
  • Timeouts and delays
  • Animation frame rates (60 frames/second = 0.0167 s/frame)
  • Video frame rates (24, 30, 60 FPS)

Database and logging:

  • Transaction timestamps (millisecond or microsecond precision)
  • System logs with second-level granularity
  • Performance monitoring (operations/second)

4. Telecommunications and Networking

Network synchronization:

  • Cell towers synchronized to GPS time (nanosecond precision)
  • Internet infrastructure timing
  • 5G networks require nanosecond coordination
  • Precision Time Protocol (PTP) for industrial networks

Data transmission:

  • Bit rates measured in bits/second (Mbps, Gbps)
  • Latency measured in milliseconds
  • Packet timing and queuing

5. Navigation and GPS

Global Positioning System:

  • Atomic clocks on satellites (accuracy ~10 nanoseconds)
  • Signal travel time calculations
  • Position accuracy requires nanosecond precision
  • GNSS systems (GPS, GLONASS, Galileo, BeiDou)

Aviation:

  • Aircraft navigation timing
  • Air traffic control coordination
  • Flight duration measurements

6. Financial and Trading

High-frequency trading:

  • Microsecond timestamps on transactions
  • Trading algorithms execute in microseconds
  • Market data feeds timestamped to nanoseconds
  • Regulatory requirements for precise time-stamping

Banking:

  • Transaction timestamps
  • Interest calculations (per second for some instruments)
  • Automated trading systems

7. Sports and Athletics

Competition timing:

  • Track and field (0.01 second precision)
  • Swimming (0.01 second precision)
  • Skiing, bobsled (0.01 second precision)
  • Motor racing (0.001 second precision)

Training and performance:

  • Stopwatches for interval training
  • Heart rate monitors (beats/second)
  • Pace calculations (minutes per kilometer/mile)
  • Reaction time testing

8. Manufacturing and Industrial

Process control:

  • Machine cycle times (seconds)
  • Assembly line timing
  • Quality control measurements
  • Synchronization of robots and automation

Industrial timing:

  • Conveyor belt speeds
  • Injection molding cycle times (2-60 seconds typical)
  • 3D printing layer times
  • Chemical process durations

Additional Unit Information

About Minute (min)

How many seconds are in a minute?

Exactly 60 seconds. This has been standardized since medieval times and is based on the Babylonian base-60 (sexagesimal) number system. Since 1967, when the second was redefined using atomic cesium-133 clocks, one minute equals precisely 60 atomic seconds, or 551,558,906,200 oscillations of caesium-133 radiation.

How many minutes are in an hour?

Exactly 60 minutes. This also comes from Babylonian mathematics. The hour was divided into 60 "first small parts" (Latin: pars minuta prima = minutes), just as each minute is divided into 60 "second small parts" (Latin: pars minuta secunda = seconds).

Why are there 60 minutes in an hour, not 100?

The base-60 system comes from ancient Babylonian mathematics (c. 3000 BCE). The Babylonians chose 60 because it's highly divisible—it has 12 factors (1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60), making fractions much simpler:

  • 1/2 hour = 30 min (whole number)
  • 1/3 hour = 20 min (whole number)
  • 1/4 hour = 15 min (whole number)
  • 1/5 hour = 12 min (whole number)
  • 1/6 hour = 10 min (whole number)

Contrast with 100 (decimal): 1/3 of 100 = 33.33... (repeating decimal). The Babylonians had sophisticated astronomy requiring complex divisions, so base-60 was superior.

How many minutes are in a day?

1,440 minutes in one 24-hour day.

Calculation: 24 hours × 60 minutes/hour = 1,440 minutes

Breakdown:

  • 12 hours (half day) = 720 minutes
  • 6 hours (quarter day) = 360 minutes
  • 1 hour = 60 minutes

How many minutes are in a year?

525,600 minutes in a standard 365-day year.

Calculation: 365 days × 24 hours × 60 minutes = 525,600 minutes

This number was popularized by the opening song "Seasons of Love" from the 1996 Broadway musical Rent:

"Five hundred twenty-five thousand, six hundred minutes... How do you measure, measure a year?"

For a leap year (366 days): 527,040 minutes (1,440 more minutes).

What's the difference between a minute of time and an arcminute?

Time minute: A unit of duration equal to 60 seconds.

  • Symbol: min (or sometimes just listed as "minutes")
  • Used for measuring elapsed time, scheduling, etc.

Arcminute (minute of arc): A unit of angular measurement equal to 1/60 of a degree.

  • Symbol: ′ (prime symbol)
  • Used in astronomy, navigation, and geographic coordinates
  • Example: 40°45′30″N = 40 degrees, 45 arcminutes, 30 arcseconds North latitude

Key connection: In navigation, 1 arcminute of latitude = 1 nautical mile (approximately 1,852 meters). This elegant relationship makes nautical charts and navigation calculations simpler.

Same name, different measurements:

  • Both descend from the Latin pars minuta prima (first small part) referring to 1/60 divisions
  • Context clarifies which is meant

How do I convert minutes to decimal hours?

Formula: Decimal hours = minutes ÷ 60

Examples:

  • 30 minutes = 30 ÷ 60 = 0.5 hours
  • 15 minutes = 15 ÷ 60 = 0.25 hours
  • 45 minutes = 45 ÷ 60 = 0.75 hours
  • 90 minutes = 90 ÷ 60 = 1.5 hours
  • 20 minutes = 20 ÷ 60 = 0.333... hours (approximately 0.33)

Common conversions:

  • 6 minutes = 0.1 hours (used in legal billing: 0.1 hour increments)
  • 12 minutes = 0.2 hours
  • 18 minutes = 0.3 hours
  • 36 minutes = 0.6 hours

Reverse (decimal hours to minutes): Multiply decimal part by 60

  • Example: 1.75 hours = 1 hour + (0.75 × 60) = 1 hour 45 minutes

How do I convert hours:minutes format to just minutes?

Formula: Total minutes = (hours × 60) + minutes

Examples:

  • 1:30 (1 hour 30 min) = (1 × 60) + 30 = 90 minutes
  • 2:15 (2 hours 15 min) = (2 × 60) + 15 = 135 minutes
  • 0:45 (45 minutes) = (0 × 60) + 45 = 45 minutes
  • 3:20 (3 hours 20 min) = (3 × 60) + 20 = 200 minutes
  • 8:00 (8 hours) = (8 × 60) + 0 = 480 minutes (full work day)

This is useful for calculating total duration, comparing times, or doing time arithmetic.

When did clocks start showing minutes?

Early mechanical clocks (1300s-1650s) had only hour hands because they weren't accurate enough to justify showing minutes. Early clocks could lose or gain 15-30 minutes per day.

Minute hands appeared around 1670-1680, shortly after Christiaan Huygens invented the pendulum clock in 1656, which improved accuracy from ~15 minutes/day error to ~15 seconds/day error—a roughly 60× improvement.

Key timeline:

  • 1656: Huygens invents pendulum clock
  • 1657: First pendulum clocks built (with minute hands)
  • 1670s: Minute hands become standard on quality clocks
  • 1675: Balance spring invented (Huygens/Hooke), further improving accuracy
  • 1680s: Pocket watches begin including minute hands
  • 1700s: Minute display becomes universal

Before this, society didn't need minute-level precision—daily life organized around hours, bells, and approximate times. The pendulum clock created both the technical ability and social need for minute-based scheduling.

Do all countries use minutes the same way?

Yes—the 60-minute hour is universal worldwide. Unlike distance (metric vs. imperial) or temperature (Celsius vs. Fahrenheit), time measurement is globally standardized:

  • All countries use 60 seconds per minute
  • All countries use 60 minutes per hour
  • All countries use 24 hours per day

International Standards:

  • ISO 8601 (international date/time standard) uses HH:MM:SS format universally
  • Coordinated Universal Time (UTC) is the global time standard
  • All time zones are defined as offsets from UTC (e.g., EST = UTC-5, JST = UTC+9)

Cultural differences in time display (not measurement):

  • 12-hour format (US, Canada, Australia, Philippines): 3:45 PM
  • 24-hour format (most of world, military, aviation): 15:45
  • Both systems use the same 60-minute hours—just different notation

Historical exception: During the French Revolution (1793-1805), France briefly tried decimal time with 100-minute hours, but it was abandoned as impractical.

How do stopwatches and timers measure fractions of a minute?

Stopwatches display time more precisely than minutes using minutes:seconds.deciseconds format:

Common formats:

  • M:SS (minutes:seconds) — e.g., 3:45 = 3 minutes, 45 seconds
  • M:SS.SS (minutes:seconds.centiseconds) — e.g., 3:45.23 = 3 min, 45.23 sec
  • H:MM:SS (hours:minutes:seconds) — e.g., 1:23:45 = 1 hr, 23 min, 45 sec

Precision levels:

  • Sport timing: Typically to 0.01 seconds (centiseconds)
    • Olympic 100m: 9.58 seconds (Usain Bolt world record)
  • Lab/scientific stopwatches: To 0.001 seconds (milliseconds)
  • Atomic clocks: To nanoseconds (0.000000001 seconds) or better

Digital displays:

  • Phone stopwatch: Usually shows minutes:seconds.centiseconds (3:45.67)
  • Microwave timer: Usually shows minutes:seconds only (3:45)
  • Oven timer: Minutes only for long cooking (45), or minutes:seconds for precise tasks

Fractions of minutes in speech:

  • "Three and a half minutes" = 3:30
  • "Two minutes thirty seconds" = 2:30
  • "Five minutes fifteen seconds" = 5:15

Why do clocks go up to 60 minutes, not continue beyond?

At 60 minutes, the minute counter resets to 0 and the hour increments by 1. This is called modular arithmetic or "clock arithmetic":

  • 0 minutes → 1 minute → ... → 59 minutes → 0 minutes (next hour)
  • Example: 2:59 PM + 1 minute = 3:00 PM (not 2:60 PM)

Why?

  • Babylonian base-60 system: We use 60 as the cycle
  • Analog clock design: The minute hand makes one complete circle (360°) per hour, returning to 12
  • Mathematical consistency: Just as we don't have 60 seconds (it becomes 1 minute), we don't have 60 minutes (it becomes 1 hour)

Modulo 60:

  • In mathematics, this is written as minutes mod 60
  • Adding times requires carrying: 45 min + 20 min = 65 min = 1 hr 5 min
  • Computer timekeeping uses this logic internally

Exception: Elapsed time can exceed 60 minutes:

  • "This meeting lasted 90 minutes" (1 hour 30 minutes)
  • Marathon time: 2:15:30 (2 hours, 15 minutes, 30 seconds)

About Second (s)

What is the base unit of time in the SI system?

The second (s) is the base unit of time in the International System of Units (SI). It's one of the seven SI base units, alongside meter (length), kilogram (mass), ampere (current), kelvin (temperature), mole (amount of substance), and candela (luminous intensity).

All other time units (minute, hour, day, year) are derived from the second.

Why is the second defined using atoms?

The atomic definition provides a much more stable and precise standard than relying on Earth's rotation, which fluctuates.

Problems with astronomical definition:

  • Earth's rotation slows by ~2 milliseconds per century (tidal friction)
  • Seasonal variations affect day length
  • Unpredictable fluctuations from earthquakes, atmospheric changes
  • Accuracy limited to ~1 part per million

Advantages of atomic definition:

  • Fundamental constant: Caesium-133 transition frequency is a property of nature
  • Reproducible: Any caesium-133 atom behaves identically
  • Stable: Unaffected by external conditions (temperature, pressure)
  • Precise: Modern atomic clocks accurate to 1 second in 100 million years

Result: GPS, telecommunications, science, and technology require nanosecond precision impossible with astronomical timekeeping.

How many seconds are in a minute?

There are exactly 60 seconds in 1 minute.

This derives from ancient Babylonian base-60 (sexagesimal) mathematics, which established 60 as the standard division for time over 4,000 years ago.

Conversions:

  • 1 minute = 60 seconds
  • 2 minutes = 120 seconds
  • 5 minutes = 300 seconds
  • 10 minutes = 600 seconds

How many seconds are in an hour?

There are exactly 3,600 seconds in 1 hour.

Calculation:

  • 1 hour = 60 minutes
  • 1 minute = 60 seconds
  • 1 hour = 60 × 60 = 3,600 seconds

Conversions:

  • 1 hour = 3,600 seconds
  • 2 hours = 7,200 seconds
  • 12 hours = 43,200 seconds
  • 24 hours (1 day) = 86,400 seconds

How many seconds are in a day?

There are 86,400 seconds in 1 day (24 hours).

Calculation:

  • 1 day = 24 hours
  • 1 hour = 3,600 seconds
  • 1 day = 24 × 3,600 = 86,400 seconds

Breakdown:

  • 24 hours × 60 minutes/hour × 60 seconds/minute = 86,400 seconds

Note: This assumes a standard 24-hour day. Due to Earth's rotation irregularities, actual solar days vary by milliseconds. Leap seconds are occasionally added to keep atomic time synchronized with Earth rotation.

How many seconds are in a year?

A standard 365-day year contains 31,536,000 seconds.

Calculation:

  • 365 days × 24 hours/day × 60 minutes/hour × 60 seconds/minute
  • = 365 × 86,400
  • = 31,536,000 seconds

Variations:

  • Leap year (366 days): 31,622,400 seconds
  • Julian year (365.25 days, average): 31,557,600 seconds
  • Tropical year (365.2422 days, Earth orbit): 31,556,925 seconds

Fun fact: The song "Seasons of Love" from Rent states "525,600 minutes" in a year, which equals 31,536,000 seconds (365 days).

What is a millisecond?

A millisecond (ms) is one-thousandth of a second: 0.001 seconds or 10⁻³ seconds.

Conversions:

  • 1 second = 1,000 milliseconds
  • 1 millisecond = 0.001 seconds
  • 1 minute = 60,000 milliseconds

Common uses:

  • Computer response times (1-100 ms)
  • Network ping times (1-300 ms typical)
  • Human reaction time (~200 ms)
  • Video frame duration (60 FPS = 16.67 ms/frame)
  • Stopwatch hundredths (0.01 s = 10 ms)

What is a nanosecond?

A nanosecond (ns) is one-billionth of a second: 0.000000001 seconds or 10⁻⁹ seconds.

Conversions:

  • 1 second = 1,000,000,000 nanoseconds (1 billion)
  • 1 millisecond = 1,000,000 nanoseconds (1 million)
  • 1 microsecond = 1,000 nanoseconds

Reference points:

  • Light travels 30 cm (1 foot) in 1 nanosecond
  • Computer processor operations: ~0.2-1 nanosecond
  • GPS timing precision: ~10 nanoseconds
  • RAM memory access: ~50-100 nanoseconds

Grace Hopper's demonstration: Computer pioneer Grace Hopper famously distributed 30cm lengths of wire to represent "one nanosecond" (distance light travels in 1 ns) to illustrate the importance of speed in computing.

Why are there 60 seconds in a minute instead of 100?

The 60-second minute derives from ancient Babylonian base-60 (sexagesimal) mathematics developed around 3000 BCE, over 1,000 years before the decimal system.

Reasons for base-60:

1. High divisibility: 60 has 12 divisors: 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60

  • Easy to divide into halves, thirds, quarters, fifths, sixths
  • 100 (decimal) has only 9 divisors: 1, 2, 4, 5, 10, 20, 25, 50, 100

2. Finger counting method:

  • Count 12 finger segments (phalanges) on one hand using thumb
  • Track count on other hand: 12 × 5 fingers = 60

3. Astronomical convenience:

  • ~360 days per year ≈ 6 × 60
  • Circle divided into 360 degrees (6 × 60)
  • Babylonian astronomy used these divisions

4. Historical persistence: The system spread through Egyptian, Greek, and Roman civilizations and became too entrenched to change. When mechanical clocks developed in medieval Europe, they adopted the existing Babylonian time divisions.

Attempts to decimalize time:

  • French Revolutionary Calendar (1793-1805): 10-hour day, 100-minute hour, 100-second minute
  • Failed: Too difficult to change clocks, conversion from traditional system
  • Result: We still use Babylonian base-60 for time, but base-10 (decimal) for most other measurements

How accurate are atomic clocks?

Modern atomic clocks are extraordinarily accurate:

Caesium atomic clocks (standard):

  • Accuracy: 1 second in 100 million years
  • Precision: Parts per trillion (10⁻¹²)
  • Used in GPS satellites, national time standards

Caesium fountain clocks (advanced):

  • Accuracy: 1 second in 300 million years
  • Precision: Better than 10⁻¹⁵
  • Used by metrology institutes (NIST, PTB, NPL)

Optical lattice clocks (state-of-the-art):

  • Accuracy: 1 second in 15-30 billion years
  • Precision: 10⁻¹⁸ to 10⁻¹⁹
  • Use strontium, ytterbium, or aluminum ions
  • So precise they detect gravitational time dilation across centimeters of height

Comparison:

  • Quartz watch: 1 second in 1-10 days (10⁻⁵ accuracy)
  • Mechanical watch: 1-10 seconds per day (10⁻⁴ to 10⁻⁵)
  • Sundial: Minutes per day (10⁻³)
  • Atomic clock: 1 second in 100 million years (10⁻¹⁶)

Why this matters: GPS requires 10-nanosecond precision; a 1-microsecond error causes 300-meter position errors.

What are leap seconds and why do we need them?

Leap seconds are occasional one-second adjustments added to Coordinated Universal Time (UTC) to keep it synchronized with Earth's rotation.

The problem:

  • Atomic time (TAI): Runs at constant rate based on caesium clocks, unchanging
  • Earth rotation (UT1): Slows gradually due to tidal friction (~2 milliseconds per day longer)
  • Discrepancy: Accumulates ~1 second every 18-24 months

Solution:

  • Add (or theoretically remove) 1 second on June 30 or December 31
  • Keeps UTC within 0.9 seconds of Earth rotation time (UT1)
  • 27 leap seconds added between 1972 and 2016
  • No leap seconds since 2016 (Earth rotation has been slightly faster recently)

How it works: Instead of 23:59:59 → 00:00:00, the sequence is: 23:59:59 → 23:59:60 → 00:00:00 (leap second inserted)

Controversy:

  • Problems: Computer systems, GPS, networks struggle with leap seconds (software bugs, crashes)
  • Proposed solution: Abolish leap seconds, let UTC and UT1 drift apart
  • Debate: Ongoing since 2000s; decision may be made in 2026-2030s

Current status: Leap seconds remain in use, but their future is uncertain.


Conversion Table: Minute to Second

Minute (min)Second (s)
0.530
160
1.590
2120
5300
10600
251,500
503,000
1006,000
25015,000
50030,000
1,00060,000

People Also Ask

How do I convert Minute to Second?

To convert Minute to Second, enter the value in Minute in the calculator above. The conversion will happen automatically. Use our free online converter for instant and accurate results. You can also visit our time converter page to convert between other units in this category.

Learn more →

What is the conversion factor from Minute to Second?

The conversion factor depends on the specific relationship between Minute and Second. You can find the exact conversion formula and factor on this page. Our calculator handles all calculations automatically. See the conversion table above for common values.

Can I convert Second back to Minute?

Yes! You can easily convert Second back to Minute by using the swap button (⇌) in the calculator above, or by visiting our Second to Minute converter page. You can also explore other time conversions on our category page.

Learn more →

What are common uses for Minute and Second?

Minute and Second are both standard units used in time measurements. They are commonly used in various applications including engineering, construction, cooking, and scientific research. Browse our time converter for more conversion options.

For more time conversion questions, visit our FAQ page or explore our conversion guides.

All Time Conversions

Second to MinuteSecond to HourSecond to DaySecond to WeekSecond to MonthSecond to YearSecond to MillisecondSecond to MicrosecondSecond to NanosecondSecond to DecadeSecond to CenturySecond to MillenniumSecond to FortnightSecond to Planck TimeSecond to ShakeSecond to Sidereal DaySecond to Sidereal YearMinute to HourMinute to DayMinute to WeekMinute to MonthMinute to YearMinute to MillisecondMinute to MicrosecondMinute to NanosecondMinute to DecadeMinute to CenturyMinute to MillenniumMinute to FortnightMinute to Planck TimeMinute to ShakeMinute to Sidereal DayMinute to Sidereal YearHour to SecondHour to MinuteHour to DayHour to WeekHour to MonthHour to YearHour to MillisecondHour to MicrosecondHour to NanosecondHour to DecadeHour to CenturyHour to MillenniumHour to FortnightHour to Planck TimeHour to ShakeHour to Sidereal DayHour to Sidereal YearDay to SecondDay to MinuteDay to HourDay to WeekDay to MonthDay to YearDay to MillisecondDay to MicrosecondDay to NanosecondDay to DecadeDay to CenturyDay to MillenniumDay to FortnightDay to Planck TimeDay to ShakeDay to Sidereal DayDay to Sidereal YearWeek to SecondWeek to MinuteWeek to HourWeek to DayWeek to MonthWeek to YearWeek to MillisecondWeek to MicrosecondWeek to NanosecondWeek to DecadeWeek to CenturyWeek to MillenniumWeek to FortnightWeek to Planck TimeWeek to ShakeWeek to Sidereal DayWeek to Sidereal YearMonth to SecondMonth to MinuteMonth to HourMonth to DayMonth to WeekMonth to YearMonth to MillisecondMonth to MicrosecondMonth to NanosecondMonth to DecadeMonth to CenturyMonth to MillenniumMonth to FortnightMonth to Planck TimeMonth to ShakeMonth to Sidereal DayMonth to Sidereal YearYear to SecondYear to MinuteYear to HourYear to DayYear to WeekYear to MonthYear to MillisecondYear to MicrosecondYear to NanosecondYear to DecadeYear to CenturyYear to MillenniumYear to FortnightYear to Planck TimeYear to ShakeYear to Sidereal DayYear to Sidereal YearMillisecond to SecondMillisecond to Minute

Verified Against Authority Standards

All conversion formulas have been verified against international standards and authoritative sources to ensure maximum accuracy and reliability.

NIST Time and Frequency

National Institute of Standards and TechnologyOfficial time standards and definitions

BIPM Second Definition

Bureau International des Poids et MesuresDefinition of the SI base unit for time

Last verified: December 3, 2025