Minute to Shake Converter
Convert minutes to shakes with our free online time converter.
Quick Answer
1 Minute = 6000000000 shakes
Formula: Minute × conversion factor = Shake
Use the calculator below for instant, accurate conversions.
Our Accuracy Guarantee
All conversion formulas on UnitsConverter.io have been verified against NIST (National Institute of Standards and Technology) guidelines and international SI standards. Our calculations are accurate to 10 decimal places for standard conversions and use arbitrary precision arithmetic for astronomical units.
Minute to Shake Calculator
How to Use the Minute to Shake Calculator:
- Enter the value you want to convert in the 'From' field (Minute).
- The converted value in Shake will appear automatically in the 'To' field.
- Use the dropdown menus to select different units within the Time category.
- Click the swap button (⇌) to reverse the conversion direction.
How to Convert Minute to Shake: Step-by-Step Guide
Converting Minute to Shake involves multiplying the value by a specific conversion factor, as shown in the formula below.
Formula:
1 Minute = 6.0000e+9 shakesExample Calculation:
Convert 60 minutes: 60 × 6.0000e+9 = 3.6000e+11 shakes
Disclaimer: For Reference Only
These conversion results are provided for informational purposes only. While we strive for accuracy, we make no guarantees regarding the precision of these results, especially for conversions involving extremely large or small numbers which may be subject to the inherent limitations of standard computer floating-point arithmetic.
Not for professional use. Results should be verified before use in any critical application. View our Terms of Service for more information.
Need to convert to other time units?
View all Time conversions →What is a Minute and a Shake?
The minute (symbol: min) is a unit of time equal to 60 seconds or 1/60 of an hour (exactly 0.016̄ hours, or approximately 0.0167 hours).
Official SI-derived definition: Since the second was redefined atomically in 1967, one minute equals exactly 60 seconds, where each second is the duration of 9,192,631,770 periods of radiation from caesium-133 atoms. Therefore:
- 1 minute = 60 × 9,192,631,770 = 551,558,906,200 caesium-133 oscillations
Practical conversions:
- 1 minute = 60 seconds (exact)
- 1 minute = 0.016666... hours (1/60 hr, exact)
- 1 hour = 60 minutes (exact)
- 1 day = 1,440 minutes (24 × 60)
- 1 week = 10,080 minutes (7 × 24 × 60)
- 1 year (365 days) = 525,600 minutes (memorably featured in the musical Rent)
The minute is not an SI base unit, but it is accepted for use with the SI alongside hours, days, and other traditional time units due to its universal cultural importance and practical utility.
Why 60?
The choice of 60 comes from ancient Babylonian sexagesimal (base-60) mathematics, developed around 3000 BCE. The Babylonians chose 60 because it's highly divisible:
- Factors of 60: 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60 (12 factors!)
- This makes fractions like 1/2 (30 min), 1/3 (20 min), 1/4 (15 min), 1/5 (12 min), 1/6 (10 min) all whole numbers
- Contrast with decimal: 100 only has factors 1, 2, 4, 5, 10, 20, 25, 50, 100 (9 factors, and divisions like 1/3 = 33.33...)
This mathematical convenience made base-60 ideal for astronomy, geometry, and timekeeping—fields requiring frequent division. The system persists today in our 60-minute hours, 60-second minutes, and 360-degree circles (6 × 60).
A Shake is an informal unit of time equal to 10 nanoseconds (10 ns), or 10⁻⁸ seconds. It is primarily used in nuclear physics and astrophysics to measure the timing of events in nuclear reactions and related phenomena.
Note: The Minute is part of the imperial/US customary system, primarily used in the US, UK, and Canada for everyday measurements. The Shake belongs to the imperial/US customary system.
History of the Minute and Shake
of the Minute
Ancient Babylonian Origins (c. 3000 BCE)
The foundation of the minute lies in the Sumerian and Babylonian sexagesimal (base-60) number system developed in ancient Mesopotamia around 3000 BCE. The Babylonians used this system for:
- Astronomical calculations: Dividing the celestial sphere and tracking planetary movements
- Geometric measurements: Dividing circles into 360 degrees (6 × 60)
- Mathematical computations: Facilitating complex fractions and divisions
- Calendar systems: Organizing time into convenient subdivisions
Cuneiform tablets from this era show sophisticated astronomical observations recorded using base-60 divisions, laying groundwork for the eventual minute.
Greek Astronomical Adoption (150 CE)
The ancient Greeks, particularly Claudius Ptolemy (c. 100-170 CE), formalized the division of hours and degrees into 60 parts in his astronomical treatise Almagest. Ptolemy used Latin terminology inherited from earlier traditions:
- "pars minuta prima" (first minute/small part) = 1/60 of a degree or hour → modern minute
- "pars minuta secunda" (second minute/small part) = 1/60 of a minute = 1/3600 of a degree/hour → modern second
These terms were primarily used for angular measurement in astronomy and navigation (describing positions of stars and planets), not yet for practical daily timekeeping.
Medieval Islamic and European Transmission (800-1300 CE)
During the Islamic Golden Age (8th-13th centuries), Arab astronomers and mathematicians preserved and expanded on Greek astronomical texts, continuing to use the 60-part division system.
When European scholars translated Arabic astronomical manuscripts in the 12th and 13th centuries (particularly at translation centers in Toledo, Spain, and Sicily), they reintroduced the Latin terms "pars minuta prima" and "pars minuta secunda" to European scholarship.
However, these remained primarily theoretical and astronomical units. Practical timekeeping in medieval Europe relied on:
- Sundials (showing hours)
- Water clocks (clepsydrae)
- Candle clocks (burning time)
- Church bells marking canonical hours (Matins, Prime, Terce, Sext, None, Vespers, Compline)
None of these devices tracked minutes—they were too imprecise, and daily life didn't require such granularity.
Mechanical Clocks Emerge—But No Minute Hands (1300s)
The first mechanical clocks appeared in Europe around 1280-1300, installed in church towers and public buildings. Early examples include:
- Salisbury Cathedral clock (England, c. 1386) - still running, one of the oldest working clocks
- Wells Cathedral clock (England, c. 1390)
- Prague Astronomical Clock (Czech Republic, 1410)
Crucially, these early clocks had only an HOUR hand. They were too inaccurate (losing or gaining 15-30 minutes per day) to justify displaying minutes. The concept of "being on time" to the minute was essentially meaningless when clocks could drift that much daily.
Pendulum Revolution: Minutes Become Meaningful (1656)
The transformative moment for minute-level timekeeping came with Christiaan Huygens' invention of the pendulum clock in 1656. This invention improved timekeeping accuracy from errors of 15 minutes per day to less than 15 seconds per day—a roughly 60-fold improvement.
Why pendulums revolutionized accuracy:
- A pendulum's swing period depends only on its length and gravity (Galileo's discovery, 1602)
- Length is constant → period is constant → highly regular "tick"
- Formula: Period = 2π√(L/g), where L = length, g = gravitational acceleration
- A 1-meter pendulum has a period of approximately 2 seconds—perfect for timekeeping
With this accuracy, displaying minutes became both practical and necessary. Clockmakers began adding minute hands to clock faces around 1660-1680.
Minute Hands Become Standard (1670-1750)
By the late 17th century:
- 1670s: Quality clocks routinely featured minute hands
- 1680s: Balance spring invention (Huygens and Robert Hooke) further improved accuracy, enabling portable watches to track minutes
- 1700s: Minute display became universal on both public clocks and personal timepieces
- 1761: John Harrison's H4 marine chronometer achieved extraordinary accuracy (losing only 5 seconds on a 81-day voyage), revolutionizing navigation
The minute transformed from an astronomical abstraction to a practical daily measurement, changing social organization fundamentally.
Societal Impact: The "Minute Culture" (1800s)
The 19th century saw the rise of minute-precise scheduling, driven by:
-
Railroad timetables (1840s onward):
- Trains required synchronized schedules to prevent collisions
- Railway time standardized clocks across regions
- Timetables specified arrivals/departures to the minute
- This drove development of time zones and standard time
-
Factory work and "time discipline" (Industrial Revolution):
- Factory shifts started at precise times (e.g., 7:00 AM, not "dawn")
- Workers punched time clocks tracking arrival to the minute
- The concept of "being late" became economically significant
- Frederick Winslow Taylor's "scientific management" (1880s-1910s) measured work tasks in minutes and seconds
-
Urban life coordination:
- Meeting times specified to the minute
- Public transportation schedules
- School bell systems marking class periods
This represented a profound cultural shift: pre-industrial societies organized time around seasonal cycles, sunlight, and approximate "hours." Industrial society required minute-level coordination of human activity.
Atomic Age: Minutes Defined by Seconds (1967-Present)
When the second was redefined in 1967 based on caesium-133 atomic oscillations (9,192,631,770 cycles = 1 second), the minute automatically inherited this precision:
1 minute = exactly 60 × 9,192,631,770 caesium oscillations = 551,558,906,200 caesium oscillations
Modern atomic clocks maintain this definition with extraordinary stability, losing less than 1 second in 100 million years. This means the minute is now defined with sub-nanosecond precision, far beyond any practical human need but essential for:
- GPS systems (requiring nanosecond synchronization)
- Financial trading (high-frequency trading in microseconds)
- Telecommunications (network synchronization)
- Scientific experiments (particle physics, gravitational wave detection)
The "525,600 Minutes" Cultural Moment (1996)
In 1996, the musical Rent by Jonathan Larson opened on Broadway, featuring the iconic song "Seasons of Love," which begins:
"Five hundred twenty-five thousand, six hundred minutes... How do you measure, measure a year?"
This number—525,600 minutes = 365 days × 24 hours × 60 minutes—became a cultural touchstone, highlighting the minute as a unit for measuring the passage of life itself, not just scheduling appointments.
The term "Shake" originated during the Manhattan Project, the World War II effort to develop the first nuclear weapons. Nuclear chain reactions happen extremely quickly, and physicists needed a convenient, short unit of time to discuss the timing of events within these reactions. Ten nanoseconds was chosen as a practical order of magnitude for many processes involved. The name itself is informal, reputedly derived from the expression "two shakes of a lamb's tail," implying a very short duration.
Common Uses and Applications: minutes vs shakes
Explore the typical applications for both Minute (imperial/US) and Shake (imperial/US) to understand their common contexts.
Common Uses for minutes
and Applications
1. Time Management and Productivity
The minute is the fundamental unit for personal and professional time management:
- Pomodoro Technique: Work in 25-minute focused sessions, followed by 5-minute breaks
- Time blocking: Schedule day in 15-, 30-, or 60-minute blocks
- Task estimation: "This report will take 45 minutes"
- Billable hours: Professional services (lawyers, consultants) often bill in 6-minute increments (0.1 hour)
- Timesheet tracking: Many systems track work time to the minute
Digital tools: Calendar apps (Google Calendar, Outlook), time tracking software (Toggl, RescueTime), and project management platforms (Asana, Monday.com) all operate on minute-based scheduling.
2. Scheduling and Appointments
Minutes enable precise coordination of activities:
- Appointment times: "Dentist at 3:15 PM" (hours and minutes)
- Event start times: "Meeting begins at 10:30 AM sharp"
- Transit timetables: "Train departs at 8:47 AM"
- Reservation systems: OpenTable shows "5:30 PM" or "8:45 PM" slots
- Class schedules: "Period 3: 10:25-11:15 AM" (50-minute period)
Buffer times: Professional schedulers often include 5-10 minute buffers between appointments to prevent domino-effect delays.
3. Sports and Athletic Competition
Many sports use minutes for game structure and performance measurement:
-
Game periods:
- Soccer: Two 45-minute halves
- Basketball (NBA): Four 12-minute quarters = 48 minutes total
- Basketball (NCAA): Two 20-minute halves = 40 minutes
- Hockey: Three 20-minute periods
- Rugby: Two 40-minute halves
-
Penalties and suspensions:
- Hockey penalty box: 2-minute, 4-minute, or 5-minute penalties
- Soccer yellow card: 10-minute sin bin (trial rule in some leagues)
-
Running performance:
- Mile time: 4-6 minutes (recreational), under 4 minutes (elite)
- 5K time: 15-30 minutes (recreational), 13-15 minutes (competitive)
- Marathon pace: Expressed as minutes per mile/km
-
Timeouts:
- NBA timeout: 75 seconds (1.25 minutes) or 30 seconds
- NFL timeout: Each team gets three per half
- College football: 1-minute timeouts
4. Navigation and Geography
Beyond time measurement, "minute" has a distinct meaning in navigation:
Arcminute (minute of arc):
- Symbol: ′ (prime symbol)
- 1 arcminute = 1/60 of a degree of angle
- 1 degree = 60 arcminutes = 60′
- 1 arcminute = 60 arcseconds = 60″
Latitude and longitude:
- Geographic coordinates: 40°45′30″N, 73°59′00″W (New York City)
- Reads as: "40 degrees, 45 minutes, 30 seconds North; 73 degrees, 59 minutes, 0 seconds West"
Nautical mile:
- 1 nautical mile = 1 arcminute of latitude (approximately 1,852 meters)
- This makes ocean navigation calculations elegant: traveling 60 nautical miles north changes your latitude by 1 degree
Map precision:
- 1 arcminute of latitude ≈ 1.85 km (1.15 miles)
- 1 arcminute of longitude ≈ 1.85 km at equator (decreases toward poles)
- Modern GPS coordinates often express minutes with decimal precision: 40°45.5′N
5. Digital Timekeeping and Computing
Computers and digital devices track time in minutes (and smaller units):
- System clocks: Display hours:minutes (14:35) or hours:minutes:seconds (14:35:47)
- File timestamps: Modified time recorded as YYYY-MM-DD HH:MM:SS
- Cron jobs: Unix/Linux scheduled tasks use minute-level specification (0-59)
- Session timeouts: "Session will expire in 5 minutes of inactivity"
- Auto-save intervals: Microsoft Word auto-saves every 10 minutes (default)
- Video timestamps: YouTube shows 5:23 (5 minutes, 23 seconds)
- Countdown timers: Online cooking timers, exam clocks, auction endings
6. Aviation and Air Travel
The aviation industry relies heavily on minute-precise timing:
- Flight schedules: Departure 10:25 AM, arrival 1:47 PM (all times to the minute)
- Flight duration: "Flight time: 2 hours 34 minutes"
- Boarding times: "Boarding begins 30 minutes before departure"
- Gate changes: "Gate closes 10 minutes before departure"
- Air traffic control: Separation requirements measured in minutes between aircraft
- Fuel planning: Reserve fuel calculated for 30-45 minutes of additional flight time
7. Education and Testing
Academic settings structure learning and assessment by minutes:
-
Class periods:
- Elementary school: 45-60 minute periods
- High school: 50-minute periods (traditional) or 90-minute blocks
- University lecture: 50 minutes ("hour" classes), 80 minutes (longer sessions)
- "10-minute break" between classes
-
Standardized tests:
- SAT Reading section: 65 minutes
- SAT Math (calculator): 55 minutes
- ACT Science: 35 minutes
- GRE Verbal section: 30 minutes
- LSAT Logical Reasoning: 35 minutes per section
-
Test-taking strategy: Students allocate time per question (e.g., "100 questions in 60 minutes = 36 seconds per question")
8. Parking and Paid Time
Many services charge based on minute increments:
-
Parking meters:
- 15-minute minimum in some cities
- $2 per hour = $0.50 per 15 minutes
- Digital meters show minutes remaining
-
Bike/scooter sharing:
- Lime, Bird, Citibike: Charge per minute (e.g., $0.39/min)
- "Unlock fee + per-minute rate"
-
Phone plans (historical):
- Pre-smartphone era: Plans sold as "450 minutes per month"
- Long-distance charges: "5¢ per minute"
- Modern shift: Unlimited minutes, data caps instead
-
Professional services:
- Legal billing: Often in 6-minute increments (1/10 hour)
- Therapy sessions: 50-minute "hour" (allows 10 minutes for notes)
- Consulting rates: "$200/hour" = $3.33/minute
9. Emergency Services
Response time measured in minutes can mean life or death:
-
Response time targets:
- Ambulance (urban): 8 minutes average target
- Fire department: 4-minute turnout time (from alarm to truck departure)
- Police: Varies widely, 5-10 minutes for priority calls
-
Emergency medical guidelines:
- Start CPR within 1 minute of cardiac arrest recognition
- Defibrillation within 3-5 minutes of cardiac arrest improves survival
- Every 1-minute delay in defibrillation decreases survival by 7-10%
- "Time is tissue" in stroke care: Every minute counts
-
911 call processing:
- Average call duration: 2-3 minutes
- Location identification: Should be under 30 seconds
- "Stay on the line" until help arrives
When to Use shakes
The Shake is almost exclusively used in specific technical fields:
- Nuclear Physics: Measuring the time intervals between successive neutron generations in a nuclear chain reaction.
- Astrophysics: Discussing timescales relevant to certain high-energy astrophysical events.
- Particle Physics: Occasionally used in experiments involving very short-lived particles or interactions.
- Laser Physics: Sometimes used in contexts involving very short laser pulses.
It is not used for everyday time measurements.
Additional Unit Information
About Minute (min)
How many seconds are in a minute?
Exactly 60 seconds. This has been standardized since medieval times and is based on the Babylonian base-60 (sexagesimal) number system. Since 1967, when the second was redefined using atomic cesium-133 clocks, one minute equals precisely 60 atomic seconds, or 551,558,906,200 oscillations of caesium-133 radiation.
How many minutes are in an hour?
Exactly 60 minutes. This also comes from Babylonian mathematics. The hour was divided into 60 "first small parts" (Latin: pars minuta prima = minutes), just as each minute is divided into 60 "second small parts" (Latin: pars minuta secunda = seconds).
Why are there 60 minutes in an hour, not 100?
The base-60 system comes from ancient Babylonian mathematics (c. 3000 BCE). The Babylonians chose 60 because it's highly divisible—it has 12 factors (1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60), making fractions much simpler:
- 1/2 hour = 30 min (whole number)
- 1/3 hour = 20 min (whole number)
- 1/4 hour = 15 min (whole number)
- 1/5 hour = 12 min (whole number)
- 1/6 hour = 10 min (whole number)
Contrast with 100 (decimal): 1/3 of 100 = 33.33... (repeating decimal). The Babylonians had sophisticated astronomy requiring complex divisions, so base-60 was superior.
How many minutes are in a day?
1,440 minutes in one 24-hour day.
Calculation: 24 hours × 60 minutes/hour = 1,440 minutes
Breakdown:
- 12 hours (half day) = 720 minutes
- 6 hours (quarter day) = 360 minutes
- 1 hour = 60 minutes
How many minutes are in a year?
525,600 minutes in a standard 365-day year.
Calculation: 365 days × 24 hours × 60 minutes = 525,600 minutes
This number was popularized by the opening song "Seasons of Love" from the 1996 Broadway musical Rent:
"Five hundred twenty-five thousand, six hundred minutes... How do you measure, measure a year?"
For a leap year (366 days): 527,040 minutes (1,440 more minutes).
What's the difference between a minute of time and an arcminute?
Time minute: A unit of duration equal to 60 seconds.
- Symbol: min (or sometimes just listed as "minutes")
- Used for measuring elapsed time, scheduling, etc.
Arcminute (minute of arc): A unit of angular measurement equal to 1/60 of a degree.
- Symbol: ′ (prime symbol)
- Used in astronomy, navigation, and geographic coordinates
- Example: 40°45′30″N = 40 degrees, 45 arcminutes, 30 arcseconds North latitude
Key connection: In navigation, 1 arcminute of latitude = 1 nautical mile (approximately 1,852 meters). This elegant relationship makes nautical charts and navigation calculations simpler.
Same name, different measurements:
- Both descend from the Latin pars minuta prima (first small part) referring to 1/60 divisions
- Context clarifies which is meant
How do I convert minutes to decimal hours?
Formula: Decimal hours = minutes ÷ 60
Examples:
- 30 minutes = 30 ÷ 60 = 0.5 hours
- 15 minutes = 15 ÷ 60 = 0.25 hours
- 45 minutes = 45 ÷ 60 = 0.75 hours
- 90 minutes = 90 ÷ 60 = 1.5 hours
- 20 minutes = 20 ÷ 60 = 0.333... hours (approximately 0.33)
Common conversions:
- 6 minutes = 0.1 hours (used in legal billing: 0.1 hour increments)
- 12 minutes = 0.2 hours
- 18 minutes = 0.3 hours
- 36 minutes = 0.6 hours
Reverse (decimal hours to minutes): Multiply decimal part by 60
- Example: 1.75 hours = 1 hour + (0.75 × 60) = 1 hour 45 minutes
How do I convert hours:minutes format to just minutes?
Formula: Total minutes = (hours × 60) + minutes
Examples:
- 1:30 (1 hour 30 min) = (1 × 60) + 30 = 90 minutes
- 2:15 (2 hours 15 min) = (2 × 60) + 15 = 135 minutes
- 0:45 (45 minutes) = (0 × 60) + 45 = 45 minutes
- 3:20 (3 hours 20 min) = (3 × 60) + 20 = 200 minutes
- 8:00 (8 hours) = (8 × 60) + 0 = 480 minutes (full work day)
This is useful for calculating total duration, comparing times, or doing time arithmetic.
When did clocks start showing minutes?
Early mechanical clocks (1300s-1650s) had only hour hands because they weren't accurate enough to justify showing minutes. Early clocks could lose or gain 15-30 minutes per day.
Minute hands appeared around 1670-1680, shortly after Christiaan Huygens invented the pendulum clock in 1656, which improved accuracy from ~15 minutes/day error to ~15 seconds/day error—a roughly 60× improvement.
Key timeline:
- 1656: Huygens invents pendulum clock
- 1657: First pendulum clocks built (with minute hands)
- 1670s: Minute hands become standard on quality clocks
- 1675: Balance spring invented (Huygens/Hooke), further improving accuracy
- 1680s: Pocket watches begin including minute hands
- 1700s: Minute display becomes universal
Before this, society didn't need minute-level precision—daily life organized around hours, bells, and approximate times. The pendulum clock created both the technical ability and social need for minute-based scheduling.
Do all countries use minutes the same way?
Yes—the 60-minute hour is universal worldwide. Unlike distance (metric vs. imperial) or temperature (Celsius vs. Fahrenheit), time measurement is globally standardized:
- All countries use 60 seconds per minute
- All countries use 60 minutes per hour
- All countries use 24 hours per day
International Standards:
- ISO 8601 (international date/time standard) uses HH:MM:SS format universally
- Coordinated Universal Time (UTC) is the global time standard
- All time zones are defined as offsets from UTC (e.g., EST = UTC-5, JST = UTC+9)
Cultural differences in time display (not measurement):
- 12-hour format (US, Canada, Australia, Philippines): 3:45 PM
- 24-hour format (most of world, military, aviation): 15:45
- Both systems use the same 60-minute hours—just different notation
Historical exception: During the French Revolution (1793-1805), France briefly tried decimal time with 100-minute hours, but it was abandoned as impractical.
How do stopwatches and timers measure fractions of a minute?
Stopwatches display time more precisely than minutes using minutes:seconds.deciseconds format:
Common formats:
- M:SS (minutes:seconds) — e.g., 3:45 = 3 minutes, 45 seconds
- M:SS.SS (minutes:seconds.centiseconds) — e.g., 3:45.23 = 3 min, 45.23 sec
- H:MM:SS (hours:minutes:seconds) — e.g., 1:23:45 = 1 hr, 23 min, 45 sec
Precision levels:
- Sport timing: Typically to 0.01 seconds (centiseconds)
- Olympic 100m: 9.58 seconds (Usain Bolt world record)
- Lab/scientific stopwatches: To 0.001 seconds (milliseconds)
- Atomic clocks: To nanoseconds (0.000000001 seconds) or better
Digital displays:
- Phone stopwatch: Usually shows minutes:seconds.centiseconds (3:45.67)
- Microwave timer: Usually shows minutes:seconds only (3:45)
- Oven timer: Minutes only for long cooking (45), or minutes:seconds for precise tasks
Fractions of minutes in speech:
- "Three and a half minutes" = 3:30
- "Two minutes thirty seconds" = 2:30
- "Five minutes fifteen seconds" = 5:15
Why do clocks go up to 60 minutes, not continue beyond?
At 60 minutes, the minute counter resets to 0 and the hour increments by 1. This is called modular arithmetic or "clock arithmetic":
- 0 minutes → 1 minute → ... → 59 minutes → 0 minutes (next hour)
- Example: 2:59 PM + 1 minute = 3:00 PM (not 2:60 PM)
Why?
- Babylonian base-60 system: We use 60 as the cycle
- Analog clock design: The minute hand makes one complete circle (360°) per hour, returning to 12
- Mathematical consistency: Just as we don't have 60 seconds (it becomes 1 minute), we don't have 60 minutes (it becomes 1 hour)
Modulo 60:
- In mathematics, this is written as minutes mod 60
- Adding times requires carrying: 45 min + 20 min = 65 min = 1 hr 5 min
- Computer timekeeping uses this logic internally
Exception: Elapsed time can exceed 60 minutes:
- "This meeting lasted 90 minutes" (1 hour 30 minutes)
- Marathon time: 2:15:30 (2 hours, 15 minutes, 30 seconds)
About Shake (shake)
How long is a Shake in seconds?
One Shake is equal to 10 nanoseconds (10 ns), which is 10⁻⁸ seconds, or 0.00000001 seconds.
Where did the name "Shake" come from?
The name is an informal term coined during the Manhattan Project. It's believed to be a humorous reference to the phrase "in two shakes of a lamb's tail," signifying a very brief period, appropriate for the rapid events in nuclear reactions.
Is the Shake an SI unit?
No, the Shake is not part of the International System of Units (SI). The standard SI unit for time is the second (s). The Shake is a specialized, informal unit used within specific scientific communities for convenience.
Conversion Table: Minute to Shake
| Minute (min) | Shake (shake) |
|---|---|
| 0.5 | 3,000,000,000 |
| 1 | 6,000,000,000 |
| 1.5 | 9,000,000,000 |
| 2 | 12,000,000,000 |
| 5 | 30,000,000,000 |
| 10 | 60,000,000,000 |
| 25 | 150,000,000,000 |
| 50 | 300,000,000,000 |
| 100 | 600,000,000,000 |
| 250 | 1,500,000,000,000 |
| 500 | 3,000,000,000,000 |
| 1,000 | 6,000,000,000,000 |
People Also Ask
How do I convert Minute to Shake?
To convert Minute to Shake, enter the value in Minute in the calculator above. The conversion will happen automatically. Use our free online converter for instant and accurate results. You can also visit our time converter page to convert between other units in this category.
Learn more →What is the conversion factor from Minute to Shake?
The conversion factor depends on the specific relationship between Minute and Shake. You can find the exact conversion formula and factor on this page. Our calculator handles all calculations automatically. See the conversion table above for common values.
Can I convert Shake back to Minute?
Yes! You can easily convert Shake back to Minute by using the swap button (⇌) in the calculator above, or by visiting our Shake to Minute converter page. You can also explore other time conversions on our category page.
Learn more →What are common uses for Minute and Shake?
Minute and Shake are both standard units used in time measurements. They are commonly used in various applications including engineering, construction, cooking, and scientific research. Browse our time converter for more conversion options.
For more time conversion questions, visit our FAQ page or explore our conversion guides.
Helpful Conversion Guides
Learn more about unit conversion with our comprehensive guides:
All Time Conversions
Other Time Units and Conversions
Explore other time units and their conversion options:
- Second (s) • Minute to Second
- Hour (h) • Minute to Hour
- Day (d) • Minute to Day
- Week (wk) • Minute to Week
- Month (mo) • Minute to Month
- Year (yr) • Minute to Year
- Millisecond (ms) • Minute to Millisecond
- Microsecond (μs) • Minute to Microsecond
- Nanosecond (ns) • Minute to Nanosecond
- Decade (dec) • Minute to Decade
Verified Against Authority Standards
All conversion formulas have been verified against international standards and authoritative sources to ensure maximum accuracy and reliability.
National Institute of Standards and Technology — Official time standards and definitions
Bureau International des Poids et Mesures — Definition of the SI base unit for time
Last verified: December 3, 2025