Month to Day Converter
Convert months to days with our free online time converter.
Quick Answer
1 Month = 30.436875 days
Formula: Month × conversion factor = Day
Use the calculator below for instant, accurate conversions.
Our Accuracy Guarantee
All conversion formulas on UnitsConverter.io have been verified against NIST (National Institute of Standards and Technology) guidelines and international SI standards. Our calculations are accurate to 10 decimal places for standard conversions and use arbitrary precision arithmetic for astronomical units.
Month to Day Calculator
How to Use the Month to Day Calculator:
- Enter the value you want to convert in the 'From' field (Month).
- The converted value in Day will appear automatically in the 'To' field.
- Use the dropdown menus to select different units within the Time category.
- Click the swap button (⇌) to reverse the conversion direction.
How to Convert Month to Day: Step-by-Step Guide
Converting Month to Day involves multiplying the value by a specific conversion factor, as shown in the formula below.
Formula:
1 Month = 30.43688 daysExample Calculation:
Convert 60 months: 60 × 30.43688 = 1826.213 days
Disclaimer: For Reference Only
These conversion results are provided for informational purposes only. While we strive for accuracy, we make no guarantees regarding the precision of these results, especially for conversions involving extremely large or small numbers which may be subject to the inherent limitations of standard computer floating-point arithmetic.
Not for professional use. Results should be verified before use in any critical application. View our Terms of Service for more information.
Need to convert to other time units?
View all Time conversions →What is a Month and a Day?
A month is a unit of time used with calendars, approximately based on the orbital period of the Moon around Earth. The word "month" derives from "Moon" (Proto-Germanic mǣnōth).
Modern Gregorian Calendar Months
In the Gregorian calendar (standard worldwide since 1582), months have irregular lengths:
| Month | Days | Hours | Weeks (approx) | |-----------|----------|-----------|-------------------| | January | 31 | 744 | 4.43 | | February | 28 (29 leap) | 672 (696 leap) | 4.00 (4.14 leap) | | March | 31 | 744 | 4.43 | | April | 30 | 720 | 4.29 | | May | 31 | 744 | 4.43 | | June | 30 | 720 | 4.29 | | July | 31 | 744 | 4.43 | | August | 31 | 744 | 4.43 | | September | 30 | 720 | 4.29 | | October | 31 | 744 | 4.43 | | November | 30 | 720 | 4.29 | | December | 31 | 744 | 4.43 |
Average Month for Conversions
For mathematical conversions, an average month is defined as:
- 1/12th of a year = 365.25 days ÷ 12 = 30.4375 days (often rounded to 30.44 days)
- 730.5 hours (30.4375 × 24)
- 43,830 minutes (730.5 × 60)
- 2,629,800 seconds (43,830 × 60)
- 4.35 weeks (30.4375 ÷ 7)
Lunar Month vs. Calendar Month
- Synodic month (lunar cycle, new moon to new moon): 29.53 days (29 days, 12 hours, 44 minutes, 3 seconds)
- Sidereal month (Moon's orbit relative to stars): 27.32 days
- Gregorian calendar month: 28-31 days (avg 30.44 days)
- Drift: Calendar months drift ~2 days per month from lunar phases
The day (symbol: d) is a unit of time equal to 24 hours, 1,440 minutes, or 86,400 seconds.
Official civil definition: Since 1967, one day is defined as exactly 86,400 SI seconds, where each second equals 9,192,631,770 periods of caesium-133 radiation. Therefore:
- 1 day = 86,400 × 9,192,631,770 = 793,927,920,332,800,000 caesium-133 oscillations
- This equals approximately 794 quadrillion atomic oscillations
Astronomical definitions:
-
Solar day (apparent solar day):
- Time between two successive transits of the Sun across the local meridian (noon to noon)
- Varies throughout year: ±16 minutes due to Earth's elliptical orbit and axial tilt
- Mean solar day: Average of all solar days = 24 hours exactly (86,400 seconds)
- This is the basis for civil timekeeping
-
Sidereal day:
- Time for Earth to rotate 360° relative to distant stars
- 23 hours, 56 minutes, 4.09 seconds (86,164.09 seconds)
- ~4 minutes shorter than solar day
- Used in astronomy for telescope tracking and star charts
-
Synodic day (planetary science):
- Time for same position of sun in sky on other planets
- Mars sol: 24 hours, 39 minutes, 35 seconds
- Venus day: 116.75 Earth days (very slow rotation)
Why the difference?
- Earth rotates 360° in one sidereal day
- But Earth also orbits the Sun (~1° per day along orbit)
- Must rotate an additional ~1° (4 minutes) for sun to return to same position
- Result: Solar day = sidereal day + ~4 minutes
- Over one year: 365 solar days, but 366 sidereal days (one extra rotation)
Note: The Month is part of the imperial/US customary system, primarily used in the US, UK, and Canada for everyday measurements. The Day belongs to the imperial/US customary system.
History of the Month and Day
of the Month
1. Ancient Lunar Origins (Pre-3000 BCE)
The concept of the month originated from observing the lunar cycle—the period from one new moon to the next, approximately 29.53 days (synodic month).
Early lunar calendars:
- Babylonian calendar (c. 2000 BCE): 12 lunar months (~354 days per year), with periodic intercalary (13th) months added every 2-3 years to realign with seasons
- Egyptian calendar (c. 3000 BCE): 12 months of exactly 30 days each (360 days) + 5 epagomenal days = 365 days, detached from lunar cycle
- Hebrew/Jewish calendar (c. 1500 BCE): Lunisolar calendar with 12-13 months (29-30 days each), still used today for religious observances
- Chinese calendar (c. 1600 BCE): Lunisolar calendar with 12-13 months, determining Chinese New Year (late January to mid-February)
Why lunar months? Ancient civilizations without artificial lighting noticed the Moon's dramatic visual changes every ~29.5 days, making it an obvious natural timekeeper.
2. Roman Calendar Evolution (753 BCE - 46 BCE)
The Roman calendar underwent dramatic transformations:
Romulus Calendar (753 BCE - legendary):
- 10 months, 304 days total, starting in March (spring equinox)
- Months: Martius (31), Aprilis (30), Maius (31), Junius (30), Quintilis (31), Sextilis (30), September (30), October (31), November (30), December (30)
- Winter gap (~61 days) was unnamed, creating calendar chaos
Numa Pompilius Reform (c. 713 BCE):
- Added January and February to fill winter gap
- 12 months, 355 days total (still 10.25 days short of solar year)
- Required periodic intercalary months (Mercedonius) to realign with seasons
- Romans disliked even numbers, so most months had 29 or 31 days (February got unlucky 28)
Late Roman Republic (c. 100 BCE):
- Calendar administration corrupt—priests (pontifices) manipulated intercalary months for political gain (extending terms, delaying elections)
- Calendar drifted months out of sync with seasons (harvest festivals in wrong seasons)
3. Julian Calendar (46 BCE - 1582 CE)
Julius Caesar's reform (46 BCE):
- Consulted Egyptian astronomer Sosigenes of Alexandria
- Adopted solar year = 365.25 days (365 days + leap day every 4 years)
- Redesigned month lengths to solar-based 28-31 days:
- 31 days: January, March, May, July (Quintilis), September, November
- 30 days: April, June, August (Sextilis), October, December
- 28/29 days: February (unlucky month, kept short)
- 46 BCE = "Year of Confusion" (445 days long to realign calendar with seasons)
Later adjustments:
- 44 BCE: Quintilis renamed July (Julius Caesar, after his assassination)
- 8 BCE: Sextilis renamed August (Augustus Caesar)
- August given 31 days (stealing 1 from February) to match July's prestige, redistributing others
- Final pattern: Jan(31), Feb(28/29), Mar(31), Apr(30), May(31), Jun(30), Jul(31), Aug(31), Sep(30), Oct(31), Nov(30), Dec(31)
Problem with Julian calendar: Solar year = 365.2422 days (not exactly 365.25), so calendar gained ~11 minutes per year = 3 days every 400 years
4. Gregorian Calendar (1582 CE - Present)
Pope Gregory XIII's reform (1582):
- Corrected drift: Removed 10 days (October 4, 1582 → October 15, 1582) to realign with seasons
- New leap year rule:
- Leap year every 4 years (like Julian)
- EXCEPT century years (1700, 1800, 1900) NOT leap years
- EXCEPT century years divisible by 400 (1600, 2000, 2400) ARE leap years
- Result: 97 leap years per 400 years = 365.2425 days average (only 27 seconds/year error)
- Month lengths unchanged from final Julian pattern
Adoption:
- Catholic countries (Spain, Portugal, Italy): Immediately (1582)
- Protestant countries (Britain, colonies): 1752 (removed 11 days: Sept 2 → Sept 14)
- Russia: 1918 (removed 13 days, after October Revolution became November Revolution)
- China: 1912 (Republic of China adoption)
- Turkey: 1926 (secular reforms)
- Now universal for civil purposes worldwide
5. Lunar Calendars Continue
Despite Gregorian dominance, lunar/lunisolar calendars continue for religious/cultural purposes:
- Islamic Hijri calendar: 12 lunar months (354-355 days), cycles through seasons every 33 years, determines Ramadan
- Hebrew calendar: Lunisolar with 12-13 months, determines Jewish holidays
- Chinese calendar: Lunisolar, determines Chinese New Year, Mid-Autumn Festival
- Hindu calendars: Multiple regional lunisolar systems
- Buddhist calendars: Various lunisolar systems across Thailand, Sri Lanka, Myanmar
of the Day
Prehistoric Recognition (Before 3000 BCE)
The day-night cycle is the most fundamental observable pattern in nature, recognized by all human cultures and even animals:
Biological origins:
- Circadian rhythms: Internal ~24-hour biological clock evolved in response to Earth's rotation
- Found in bacteria, plants, animals, humans
- Regulated by light/dark cycle
- Predates human civilization by billions of years
Early human observation:
- Stone Age: Organized activities by sun position (hunting at dawn, gathering by day)
- Neolithic era: Agricultural cycles tied to day length (planting, harvesting)
- Megalithic monuments: Stonehenge (c. 3000 BCE) aligned with solstice sunrise
- Earliest "clocks": Shadows cast by objects (proto-sundials)
Ancient Egyptian Timekeeping (c. 3000 BCE)
Egyptians formalized day measurement:
-
Shadow clocks and sundials (c. 1500 BCE):
- Obelisks cast shadows indicating time of day
- Divided daylight into 12 parts (seasonal hours)
- Used horizontal bars with markings
-
Water clocks (clepsydrae):
- Used at night when sundials didn't work
- Water dripped at constant rate through calibrated container
- Divided night into 12 parts
-
Decans (star clocks):
- 36 groups of stars rising throughout year
- Each decan rose ~40 minutes apart
- Used to tell time at night
Egyptian day structure:
- Day began at sunrise (variable time)
- 12 hours daylight + 12 hours darkness = 24 hours
- But "hours" varied by season (longer daytime hours in summer)
Babylonian Contributions (c. 2000 BCE)
Babylonians established key concepts:
-
Seven-day week:
- Based on seven visible celestial bodies (Sun, Moon, Mercury, Venus, Mars, Jupiter, Saturn)
- Each day named after a planet/god
- This system spread globally
-
Day began at sunset:
- Still used in Hebrew and Islamic calendars
- Genesis 1:5: "And there was evening, and there was morning—the first day"
-
Base-60 mathematics:
- Eventually led to 24 hours, 60 minutes, 60 seconds
- 360° circle (from ~360 days in year)
Greek and Roman Systems (500 BCE - 400 CE)
Greek astronomers:
- Hipparchus (c. 150 BCE): Studied equation of time (variation in solar day length)
- Recognized need for "mean solar day" as average
Roman timekeeping:
- Day began at midnight (adopted by modern civil timekeeping)
- Divided into:
- Dies (daytime): Sunrise to sunset, 12 horae (hours)
- Nox (nighttime): Sunset to sunrise, 4 vigiliae (watches) of ~3 hours each
- Market day cycle: Nundinae (8-day week, superseded by 7-day week)
Roman calendar influence:
- Julian Calendar (45 BCE): 365.25-day year, leap years
- Day names from planets (still used): Sunday (Sun), Monday (Moon), Saturday (Saturn)
Medieval and Islamic Developments (600-1300 CE)
Islamic timekeeping:
- Day begins at sunset (following Hebrew tradition)
- Five daily prayers (salat) structured the day:
- Fajr (dawn), Dhuhr (noon), Asr (afternoon), Maghrib (sunset), Isha (night)
- Sophisticated astronomical tables calculated prayer times
- "Islamic day" vs. "civil day" distinction in Muslim countries
Medieval Christian hours:
- Canonical hours: Structured monastic life
- Matins (midnight), Lauds (dawn), Prime (6 AM), Terce (9 AM)
- Sext (noon), None (3 PM), Vespers (sunset), Compline (bedtime)
- Church bells marked these hours, organizing community life
Mechanical Clocks and Equal Hours (1300s)
Transformation of daily time:
Before mechanical clocks:
- "Hours" varied by season
- Time was task-oriented ("work until sunset")
- Imprecise coordination
After mechanical clocks (1300s-1400s):
- 24 equal hours became standard
- Clocks tick at constant rate regardless of season
- "Clock time" replaced "sun time" for daily schedules
- Enabled precise coordination of activities
Social impact:
- Time discipline: Workers expected at specific times
- Urban life required synchronization
- "Punctuality" became a virtue
- Transition from natural rhythms to mechanical rhythms
Scientific Definition (1800s)
Astronomical measurement:
- 1832: Second officially defined as 1/86,400 of mean solar day
- Astronomers recognized Earth's rotation not perfectly uniform
- Tidal friction slowly increases day length (~1.7 milliseconds per century)
Problem discovered:
- Earth's rotation varies:
- Seasonal variations (atmosphere, ice melt)
- Long-term slowing (tidal friction from Moon)
- Irregular variations (core-mantle coupling, earthquakes)
- "Day" based on Earth rotation became unreliable time standard
Atomic Era: Day Decoupled from Rotation (1967)
Atomic second (1967):
- Second redefined based on caesium-133 atomic transitions
- Day remains 86,400 seconds (by definition)
- But now independent of Earth's actual rotation period
Consequence: Leap seconds
- Earth's rotation gradually slowing
- Atomic time (TAI) and Earth rotation time (UT1) drift apart
- Leap seconds added to keep them synchronized:
- 27 leap seconds added between 1972-2016
- Last one: December 31, 2016 (23:59:60)
- Makes that day 86,401 seconds long
- Controversy: May abolish leap seconds in favor of "leap hours" every few centuries
Current system:
- UTC (Coordinated Universal Time): Atomic time with leap seconds
- Keeps within 0.9 seconds of Earth rotation (UT1)
- Used for civil timekeeping worldwide
Calendar Evolution
Ancient calendars:
- Lunar calendars: Based on moon phases (~29.5 days per month)
- Solar calendars: Based on seasonal year (365.25 days)
- Lunisolar calendars: Combine both (Hebrew, Chinese)
Gregorian Calendar (1582):
- Reformed Julian calendar
- Year = 365.2425 days (very close to true solar year: 365.2422 days)
- Leap year rules:
- Divisible by 4: Leap year (1600, 2000, 2004, 2024)
- Divisible by 100: Not leap year (1700, 1800, 1900)
- Divisible by 400: Leap year anyway (1600, 2000, 2400)
- Now used in nearly all countries for civil purposes
Common Uses and Applications: months vs days
Explore the typical applications for both Month (imperial/US) and Day (imperial/US) to understand their common contexts.
Common Uses for months
and Applications
1. Financial Planning and Budgeting
Monthly budget framework:
- Income: Track monthly take-home pay (after taxes)
- Fixed expenses: Rent/mortgage, car payment, insurance (consistent monthly amounts)
- Variable expenses: Groceries, utilities, entertainment (varies month-to-month)
- Savings goals: "Save $500/month" = $6,000/year
- Debt repayment: "Extra $200/month toward credit card" = $2,400/year payoff
Monthly vs. annual thinking:
- $150/month subscription = $1,800/year (psychological impact: monthly feels smaller)
- "Latte factor": $5 daily coffee = $150/month = $1,800/year = $18,000/decade
Monthly financial ratios:
- Rent rule: Rent should be ≤30% of monthly gross income
- 50/30/20 rule: 50% needs, 30% wants, 20% savings (monthly breakdown)
2. Subscription and Membership Economy
Monthly Recurring Revenue (MRR) = business model foundation:
- SaaS (Software as a Service): Monthly subscription pricing (e.g., Adobe Creative Cloud $54.99/month)
- Streaming services: Netflix, Spotify, Disney+ (monthly billing standard)
- Gym memberships: Monthly dues (e.g., $30-100/month depending on gym)
- Amazon Prime: $14.99/month (or $139/year = $11.58/month, annual cheaper)
Monthly vs. annual pricing psychology:
- Annual = higher upfront cost, lower monthly rate, customer lock-in
- Monthly = lower barrier to entry, higher churn risk, higher effective rate
3. Project Management and Milestones
Standard project durations:
- 1-month sprint: Agile/Scrum often uses 2-4 week sprints (close to 1 month)
- 3-month project: Standard short-term project (1 quarter)
- 6-month project: Medium-term initiative (2 quarters, half-year)
- 12-month project: Long-term strategic initiative (full year)
Monthly milestones:
- Month 1: Planning and setup
- Month 2: Development/implementation
- Month 3: Testing and refinement
- Month 4: Launch and monitoring
4. Employment and Compensation
Pay period variations:
- Monthly (12 pay periods/year): Common internationally, especially Europe/Asia
- Pros: Aligns with monthly bills, simpler accounting
- Cons: Long gap between paychecks (especially if month has 31 days)
- Semi-monthly (24 pay periods/year): 1st and 15th of each month
- Pros: More frequent pay (twice per month), aligns with mid-month expenses
- Cons: Pay dates vary (weekends/holidays), inconsistent days between paychecks
- Bi-weekly (26 pay periods/year): Every 2 weeks (e.g., every other Friday)
- Pros: Consistent day of week, 2 "extra" paychecks per year
- Cons: Doesn't align with monthly bills, some months have 3 paychecks
Monthly salary vs. hourly:
- Salaried: Annual salary ÷ 12 = monthly salary (e.g., $72,000/year = $6,000/month)
- Hourly: (Hourly rate × hours/week × 52 weeks) ÷ 12 months (e.g., $25/hr × 40hrs × 52 ÷ 12 = $4,333/month)
5. Calendar Organization
Month as primary calendar unit:
- Monthly view: Standard calendar layout (7 columns × 4-6 rows = 28-42 cells)
- Month numbering: January = 1, February = 2, ... December = 12
- Date notation:
- US: MM/DD/YYYY (month first)
- International (ISO 8601): YYYY-MM-DD (year-month-day)
- European: DD/MM/YYYY (day first)
Month-based planning:
- Goals: "Read 2 books per month" = 24 books/year
- Habits: "Exercise 3 times per week" = 12-13 times per month
- Reviews: "Monthly review" of goals, finances, habits
6. Seasonal Business Cycles
Retail calendar:
- January: Post-holiday sales, fitness equipment (New Year's resolutions)
- February: Valentine's Day
- March-April: Spring cleaning, Easter, tax season
- May: Mother's Day, Memorial Day (unofficial summer start)
- June: Father's Day, graduations, weddings
- July-August: Summer travel, back-to-school shopping (late August)
- September: Labor Day, fall season begins
- October: Halloween
- November: Thanksgiving, Black Friday (biggest shopping day)
- December: Holiday shopping season (Christmas/Hanukkah)
Quarterly thinking (3-month periods):
- Q1 (Jan-Mar): New Year momentum, tax season
- Q2 (Apr-Jun): Spring/early summer, end of fiscal year for many companies
- Q3 (Jul-Sep): Summer slowdown, back-to-school
- Q4 (Oct-Dec): Holiday season, year-end push, budget planning
7. Age and Developmental Milestones
Infant/child development:
- 0-12 months: Tracked monthly (dramatic changes each month)
- 3 months: Lifts head, smiles
- 6 months: Sits up, starts solid foods
- 9 months: Crawls, says "mama/dada"
- 12 months: Walks, first words
- 12-24 months: Often still tracked monthly ("18 months old" vs. "1.5 years")
- 2+ years: Typically switch to years ("3 years old")
Age expression:
- Months (0-23 months): More precise for developmental tracking
- Years (2+ years): Standard for most purposes
- Decades (30s, 40s, etc.): Rough life stages
When to Use days
and Applications
1. Age and Lifespan Measurement
Human life measured in days:
-
Age calculation:
- Newborn: Age in days (first month)
- Infant: Days and weeks (first 12 months)
- Adult: Years (365.25 days per year)
-
Life expectancy:
- Global average: ~73 years = 26,645 days
- US average: ~78 years = 28,470 days
- Japan (highest): ~84 years = 30,660 days
-
Milestones:
- 100 days: Traditional celebration in some cultures
- 1,000 days: ~2.7 years (toddler milestone)
- 10,000 days: ~27.4 years (young adult)
- 20,000 days: ~54.8 years (mid-life)
- 30,000 days: ~82.2 years (if reached, long life)
-
Historical figures:
- "Lived 90 years" = 32,850 days
- Queen Elizabeth II: 35,065 days (96 years, 140 days)
- Oldest verified person: Jeanne Calment, 44,724 days (122 years, 164 days)
2. Project Management and Planning
Projects measured in days:
-
Timeline terminology:
- "Day 0": Project start
- "Elapsed days": Total calendar days
- "Working days": Excluding weekends/holidays
- "Man-days": One person working one day
-
Estimation:
- "3-day task"
- "2-week project" = 10 working days
- "6-month project" = ~130 working days
-
Milestones:
- "Deliverable due Day 30"
- "Phase 1 complete Day 45"
- "Final deadline Day 90"
-
Agile/Scrum:
- Sprint: 14 days (2 weeks) typical
- Daily standup: Every day, 15 minutes
- Sprint review: End of 14-day sprint
3. Astronomy and Planetary Science
Planetary rotation periods measured in days:
-
Planetary "days" (rotation period):
- Mercury: 58.6 Earth days
- Venus: 243 Earth days (slower than its year!)
- Earth: 1 day (23 hours 56 min sidereal)
- Mars: 1.03 days (24 hours 37 min) - called a "sol"
- Jupiter: 0.41 days (9 hours 56 min)
- Saturn: 0.45 days (10 hours 33 min)
- Uranus: 0.72 days (17 hours 14 min)
- Neptune: 0.67 days (16 hours 6 min)
-
Orbital periods (years in days):
- Mercury year: 88 Earth days
- Venus year: 225 Earth days
- Mars year: 687 Earth days
- Earth year: 365.25 days
-
Mars missions:
- Use "sols" (Mars days) for mission planning
- Sol 1, Sol 2, Sol 3... (rovers like Curiosity, Perseverance)
- Communication delay: 3-22 minutes (depends on planets' positions)
-
Astronomical events:
- Lunar month: 29.53 days (new moon to new moon)
- Eclipse cycles: Saros cycle = 6,585.3 days (18 years, 11 days)
4. Weather and Climate
Weather patterns measured in days:
-
Forecasting:
- 1-day forecast: Very accurate (~90%)
- 3-day forecast: Accurate (~80%)
- 7-day forecast: Moderately accurate (~65%)
- 10+ day forecast: Less reliable
-
Weather phenomena:
- Heat wave: 3+ consecutive days above threshold
- Cold snap: 2+ days below freezing
- Drought: 15+ days without significant rain
-
Seasonal patterns:
- Growing season: Number of frost-free days (150-200+ days)
- Rainy season: 90-180 days (tropics)
- Winter: Shortest day (winter solstice) vs. longest night
-
Degree days:
- Heating degree days (HDD): Measure of cold
- Cooling degree days (CDD): Measure of heat
- Base 65°F: Sum of daily degrees below/above
-
Climate records:
- "Hottest day on record"
- "100 days above 90°F" (Phoenix averages 110+ days)
- "Consecutive days of rain" (record: 331 days, Kauai)
5. Finance and Business
Financial operations measured in days:
-
Payment terms:
- Net 30: Payment due 30 days after invoice
- Net 60: Payment due 60 days after invoice
- 2/10 Net 30: 2% discount if paid within 10 days, otherwise due in 30
-
Interest calculation:
- Daily interest: Annual rate ÷ 365 days
- Grace period: 21-25 days (credit cards)
- Late fees: Applied after due date + grace period
-
Financial metrics:
- Days sales outstanding (DSO): Average days to collect payment
- Days payable outstanding (DPO): Average days to pay suppliers
- Days inventory outstanding (DIO): Average days inventory held
-
Trading:
- "Trading day": Stock market open day (weekdays, excluding holidays)
- NYSE: ~252 trading days per year
- Settlement: T+2 (trade day + 2 business days)
-
Bonds:
- Accrued interest calculated by day
- 30/360 day count convention (assumes 30-day months)
- Actual/365: Uses actual calendar days
6. Data Storage and Computing
Digital retention measured in days:
-
Backups:
- Daily backups: 7 days retained (1 week)
- Weekly backups: 30 days retained (1 month)
- Monthly backups: 365 days retained (1 year)
-
Logs:
- Server logs: 30-90 days retention typical
- Security logs: 90-365 days (compliance requirements)
- Application logs: 14-30 days
-
Caching:
- Browser cache: 30 days default
- CDN cache: 1-30 days depending on content
- DNS cache: 1 day (86,400 seconds TTL common)
-
Data retention policies:
- GDPR: 30 days to fulfill deletion request
- Email: Auto-delete after 90 days (some organizations)
- Trash/recycle bin: 30 days before permanent deletion
7. Habits and Personal Development
Habit formation measured in days:
-
Popular beliefs:
- "21 days to form a habit" (myth - actually varies widely)
- "30-day challenge" (fitness, meditation, etc.)
- "90-day transformation programs"
-
Research findings:
- Average habit formation: 66 days (range: 18-254 days)
- Simple habits: 18-30 days
- Complex habits: 200+ days
-
Streaks:
- "100-day streak" on language apps (Duolingo)
- "30-day yoga challenge"
- "365-day photo project" (one photo per day for a year)
-
Reading goals:
- "Read every day for 30 days"
- "One book per week" = finish in 7 days
- "365 books in a year" = 1 per day
Additional Unit Information
About Month (mo)
1. How many days are in a month?
It varies by month:
- 31 days: January, March, May, July, August, October, December (7 months)
- 30 days: April, June, September, November (4 months)
- 28 days: February (non-leap year)
- 29 days: February (leap year, every 4 years with exceptions)
Average month = 30.44 days (365.25 ÷ 12), used for conversions.
Mnemonic: "30 days hath September, April, June, and November. All the rest have 31, except February alone, which has 28 days clear, and 29 in each leap year."
Knuckle trick: Make fists and count across knuckles (31 days) and valleys (30 days, except February).
2. Why do months have different lengths?
Historical reasons:
- Roman calendar origins: 10-month calendar (Romulus) had 304 days, leaving ~61-day winter gap
- Numa Pompilius added January and February (c. 713 BCE), creating 12 months with 355 days
- Julius Caesar (46 BCE): Julian calendar with 365.25-day year required distributing days across 12 months
- Political decisions: July (Julius Caesar) and August (Augustus Caesar) both given 31 days for prestige, shortening February to 28 days
Result: Irregular pattern (31-28-31-30-31-30-31-31-30-31-30-31) due to Roman politics, not astronomy.
3. What is an average month length used for conversions?
Average month = 30.4375 days (often rounded to 30.44 days)
Calculation: 365.25 days per year ÷ 12 months = 30.4375 days per month
- 365.25 accounts for leap year (365 × 3 years + 366 × 1 year = 1,461 days ÷ 4 years = 365.25)
When to use average month:
- Converting months to days/weeks/hours when specific month unknown
- Financial calculations (monthly interest rates, annual salary ÷ 12)
- Age approximations ("6 months old" ≈ 183 days)
When NOT to use average: Specific date calculations (use actual month lengths).
4. Is a month based on the Moon?
Historically, yes. Currently, only approximately.
Etymology: "Month" derives from "Moon" (Old English mōnað, Proto-Germanic mǣnōth).
Lunar cycle: 29.53 days (synodic month, new moon to new moon)
Gregorian calendar month: 28-31 days (avg 30.44 days)
- Drift: Calendar months drift ~2 days per month from lunar phases
- Example: Full moon on January 15 → next full moon ~February 13 (29.5 days later), not February 15
Modern lunar calendars:
- Islamic calendar: Strictly lunar (12 months × 29.5 days = 354 days), cycles through seasons every 33 years
- Hebrew/Chinese calendars: Lunisolar (12-13 months, adding extra month every 2-3 years to stay aligned with seasons)
Why detached? Solar year (365.24 days) and lunar year (354.37 days) are incompatible—12 lunar months = 10.87 days short of solar year.
5. How many weeks are in a month?
Average month = 4.35 weeks (30.44 days ÷ 7 days/week)
Common mistake: Assuming 1 month = 4 weeks (WRONG—actually 4 weeks = 28 days, most months are 30-31 days)
Specific months:
- 28 days (February, non-leap) = 4.00 weeks
- 29 days (February, leap) = 4.14 weeks
- 30 days (April, June, September, November) = 4.29 weeks
- 31 days (January, March, May, July, August, October, December) = 4.43 weeks
Implications:
- "4 weeks pregnant" ≠ "1 month pregnant" (4 weeks = 28 days, 1 month avg = 30.44 days)
- "Save $100/week" = $435/month (not $400)
6. How many months are in a year?
12 months in all major calendar systems (Gregorian, Julian, Hebrew, Chinese, Hindu).
Why 12 months?
- Lunar approximation: 12 lunar cycles (~354 days) close to solar year (365 days)
- Convenient division: 12 has many factors (1, 2, 3, 4, 6, 12), making quarters (3 months), half-years (6 months) easy
- Historical precedent: Babylonian, Roman calendars used 12 months
Alternative proposals (failed):
- French Republican Calendar (1793-1805): 12 months × 30 days + 5 epagomenal days (abandoned after Napoleon)
- International Fixed Calendar (proposed 1930s): 13 months × 28 days + 1 extra day (never adopted, opposed by religious groups)
7. What is a leap year and how does it affect months?
Leap year: Year with 366 days (not 365), adding 1 extra day to February (29 days instead of 28).
Leap year rule (Gregorian calendar):
- Year divisible by 4 = leap year (e.g., 2024)
- EXCEPT century years (1700, 1800, 1900) = NOT leap year
- EXCEPT century years divisible by 400 (1600, 2000, 2400) = leap year
Why leap years? Solar year = 365.2422 days (not exactly 365), so calendar gains ~0.2422 days per year = ~1 day every 4 years. Adding leap day keeps calendar aligned with seasons.
Impact on months:
- Only February affected (28 → 29 days)
- Leap year: 366 days = 52 weeks + 2 days (52.29 weeks)
- Non-leap year: 365 days = 52 weeks + 1 day (52.14 weeks)
Next leap years: 2024, 2028, 2032, 2036, 2040
8. What is the origin of month names?
Month names (Gregorian calendar, from Latin):
| Month | Origin | Meaning | |-----------|-----------|-------------| | January | Janus (Roman god) | God of beginnings, doorways (two faces looking forward/backward) | | February | Februa (Roman purification festival) | Purification ritual held mid-February | | March | Mars (Roman god) | God of war (originally first month of Roman year) | | April | Aprilis (Latin) | "To open" (buds opening in spring) or Aphrodite (Greek goddess) | | May | Maia (Roman goddess) | Goddess of growth, spring | | June | Juno (Roman goddess) | Goddess of marriage, queen of gods | | July | Julius Caesar | Roman dictator (month of his birth), originally Quintilis ("fifth") | | August | Augustus Caesar | First Roman emperor, originally Sextilis ("sixth") | | September | Septem (Latin) | "Seven" (originally 7th month before January/February added) | | October | Octo (Latin) | "Eight" (originally 8th month) | | November | Novem (Latin) | "Nine" (originally 9th month) | | December | Decem (Latin) | "Ten" (originally 10th month) |
Historical shift: September-December originally matched their numeric names (7th-10th months) when Roman year started in March. Adding January/February shifted them to 9th-12th positions.
9. Why is February the shortest month?
Roman superstition and politics:
- Roman numerology: Romans considered even numbers unlucky, so most months had 29 or 31 days (odd numbers)
- February = unlucky month: Month of purification rituals (Februa), associated with death/underworld, so Romans kept it short
- Julius Caesar's reform (46 BCE): Distributed days to create 365.25-day year, February remained shortest at 28 days
- Augustus's adjustment (8 BCE): Legend says Augustus took 1 day from February (29 → 28) to make August 31 days (matching July), but historians dispute this—likely just continued existing pattern
Result: February = 28 days (29 in leap years), shortest month by 1-3 days.
10. What are the financial quarters?
Financial quarters (Q1, Q2, Q3, Q4): 3-month periods dividing the fiscal year for business reporting.
Calendar year quarters:
- Q1 = January, February, March (90/91 days)
- Q2 = April, May, June (91 days)
- Q3 = July, August, September (92 days)
- Q4 = October, November, December (92 days)
Fiscal year variations: Many companies/governments use different fiscal years:
- US federal government: Oct 1 - Sep 30 (Q1 = Oct-Dec)
- UK government: Apr 1 - Mar 31 (Q1 = Apr-Jun)
- Japan/India: Apr 1 - Mar 31
- Australia: Jul 1 - Jun 30
Why quarters? Balance between frequent reporting (not too infrequent like annual) and manageable workload (not too frequent like monthly for major reporting).
11. How do I calculate age in months?
Formula: (Current year - Birth year) × 12 + (Current month - Birth month)
Example 1: Born March 15, 2020, today is June 15, 2024
- (2024 - 2020) × 12 + (6 - 3) = 4 × 12 + 3 = 51 months old
Example 2: Born November 20, 2022, today is January 10, 2024
- (2024 - 2022) × 12 + (1 - 11) = 2 × 12 - 10 = 14 months old
Precision note: Calculation above assumes same day of month. For exact age:
- If current day ≥ birth day: Use formula above
- If current day < birth day: Subtract 1 month (haven't reached full month yet)
When to use months for age:
- 0-23 months: Infant/toddler development changes rapidly monthly
- 24+ months: Typically switch to years ("2 years old" not "24 months old")
12. What's the difference between bi-monthly and semi-monthly?
Confusing terminology:
Bi-monthly = Ambiguous (avoid using)
- Meaning 1: Every 2 months (6 times per year)
- Meaning 2: Twice per month (24 times per year)
Semi-monthly = Twice per month (24 times per year)
- Example: Paycheck on 1st and 15th of each month
- 12 months × 2 = 24 pay periods per year
Bi-weekly = Every 2 weeks (26 times per year, not 24)
- Example: Paycheck every other Friday
- 52 weeks ÷ 2 = 26 pay periods per year
Recommendation: Avoid "bi-monthly" (ambiguous). Use "every 2 months" (6×/year) or "twice per month"/"semi-monthly" (24×/year).
About Day (d)
How many hours are in a day?
Exactly 24 hours in a standard civil day.
This is a defined constant: 1 day = 24 hours = 1,440 minutes = 86,400 seconds.
Exception: Daylight Saving Time transitions create days with 23 hours (spring forward) or 25 hours (fall back) in regions that observe DST.
How many seconds are in a day?
Exactly 86,400 seconds in a standard day.
Calculation: 24 hours × 60 minutes × 60 seconds = 86,400 seconds
Since 1967, this equals 793,927,920,332,800,000 caesium-133 oscillations (~794 quadrillion).
Exception: Days with leap seconds have 86,401 seconds (last occurred December 31, 2016).
Is every day exactly 24 hours long?
For civil timekeeping: Yes. The day is defined as exactly 24 hours (86,400 seconds).
For Earth's rotation: No. Earth's actual rotation period varies:
- Gradually slowing (~1.7 milliseconds per century) due to tidal friction from Moon
- Seasonal variations (±1 millisecond) from atmospheric/oceanic changes
- Irregular variations from earthquakes, ice melt, core-mantle coupling
Solution: Leap seconds occasionally added to keep clock time synchronized with Earth's rotation (within 0.9 seconds).
What's the difference between a solar day and a sidereal day?
Solar day (24 hours):
- Time from one solar noon to the next (sun at highest point)
- What we use for civil timekeeping
- Accounts for Earth's orbit around sun
Sidereal day (23 hours, 56 minutes, 4 seconds):
- Time for Earth to rotate 360° relative to distant stars
- Used in astronomy for telescope tracking
- ~4 minutes shorter than solar day
Why the difference? After Earth rotates 360° (one sidereal day), it has moved ~1° along its orbit. It must rotate an additional ~1° (~4 minutes) for the sun to return to the same position in the sky.
Result: 365 solar days per year, but 366 sidereal days per year (one extra rotation due to orbit).
Why does February have 28 days?
Historical reasons:
-
Roman calendar (753 BCE):
- Originally 10 months, 304 days (March-December)
- Winter was monthless period
-
Numa Pompilius reform (c. 713 BCE):
- Added January and February
- Romans considered even numbers unlucky
- Made most months 29 or 31 days
- February got leftover days: 28 (occasionally 29)
-
Julius Caesar (45 BCE):
- Julian calendar: 365.25-day year
- Added day to February every 4 years (leap year)
- February remained shortest month
-
Pope Gregory XIII (1582):
- Gregorian calendar reform
- Refined leap year rules
- February kept 28/29-day structure
Why not fix it? Changing calendar would disrupt billions of systems worldwide (contracts, software, cultural traditions).
How many days are in a year?
Common year: 365 days Leap year: 366 days
Solar/tropical year (Earth's orbit): 365.2422 days (365 days, 5 hours, 48 minutes, 46 seconds)
Leap year rules (Gregorian calendar):
- Divisible by 4: Leap year (2024, 2028)
- Divisible by 100: Not leap year (2100, 2200)
- Divisible by 400: Leap year (2000, 2400)
Average Gregorian year: 365.2425 days (very close to true solar year)
Other calendar systems:
- Islamic calendar: 354 days (lunar)
- Hebrew calendar: 353-385 days (lunisolar, variable)
- Julian calendar: 365.25 days (old system, now obsolete)
What is a leap second?
A leap second is an extra second added to clocks to keep atomic time synchronized with Earth's rotation.
Why needed:
- Earth's rotation gradually slowing (tidal friction)
- Atomic clocks run at constant rate (86,400 seconds per day)
- Without leap seconds, clock time would drift from solar time
How it works:
- Added at end of June 30 or December 31
- Clock reads 23:59:59 → 23:59:60 → 00:00:00 (next day)
- That day has 86,401 seconds instead of 86,400
History:
- 27 leap seconds added between 1972-2016
- Last one: December 31, 2016
- None added since (Earth's rotation has been speeding up slightly)
Controversy:
- Causes problems for computer systems
- Proposed to abolish in favor of letting atomic time drift (then add "leap hour" every few centuries)
How do different cultures define when a day starts?
Different traditions begin the day at different times:
Midnight (00:00) - Modern civil time:
- Used by most countries for official purposes
- Inherited from Roman tradition
- Convenient for business (avoids confusion around midday)
Sunset - Jewish and Islamic tradition:
- Hebrew calendar: Day begins at sunset
- Islamic calendar: Day begins at sunset
- Biblical: "And there was evening, and there was morning—the first day"
- Makes sense for agricultural societies
Dawn/Sunrise - Ancient Egypt, Hinduism:
- Egyptian day began at sunrise
- Hindu day traditionally begins at sunrise
- Natural marker of "beginning" of daylight
Noon - Ancient Babylonians (some periods):
- Based on sun at highest point
- Astronomical reference
Modern inconsistency:
- Civil day: Midnight
- Religious calendars: Often sunset
- Common language: "Day" often means daylight hours only
How old am I in days?
Formula: Age in days = (Years × 365.25) + extra days since last birthday
Example:
- Born January 1, 2000
- Today is November 26, 2024
- Age: 24 years, 329 days
- Days: (24 × 365.25) + 329 ≈ 9,095 days
Online calculators:
- Many websites calculate exact age in days
- Account for actual leap years experienced
- Can calculate down to hours/minutes/seconds
Milestones:
- 1,000 days: ~2.7 years old
- 10,000 days: ~27.4 years old ("10,000-day birthday")
- 20,000 days: ~54.8 years old
- 30,000 days: ~82.2 years old (if reached)
Why is a week 7 days?
Ancient origins:
-
Babylonian astronomy (c. 2000 BCE):
- Seven visible celestial bodies: Sun, Moon, Mercury, Venus, Mars, Jupiter, Saturn
- Each "ruled" one day
- 7-day planetary week
-
Biblical/Jewish tradition:
- Genesis creation story: God created world in 6 days, rested on 7th
- Sabbath (7th day) holy day of rest
- Commandment: "Remember the Sabbath day"
-
Roman adoption:
- Romans adopted 7-day week (1st-3rd century CE)
- Named days after planets/gods
- Spread throughout Roman Empire
-
Global spread:
- Christianity spread 7-day week with Sunday as holy day
- Islam adopted 7-day week with Friday as holy day
- Now universal worldwide
Why not 10 days?
- French Revolution tried 10-day week (1793-1805) - failed
- USSR tried 5-day and 6-day weeks (1929-1940) - abandoned
- 7-day week too culturally embedded to change
Day names (English):
- Sunday: Sun's day
- Monday: Moon's day
- Tuesday: Tiw's day (Norse god)
- Wednesday: Woden's day (Odin)
- Thursday: Thor's day
- Friday: Frigg's day (Norse goddess)
- Saturday: Saturn's day
Can a day ever be longer or shorter than 24 hours?
For civil timekeeping: Usually no. A day is defined as exactly 24 hours (86,400 seconds).
Exceptions:
-
Leap seconds:
- Day with leap second = 86,401 seconds (0.001% longer)
- 27 instances between 1972-2016
- Adds one second at end of June 30 or December 31
-
Daylight Saving Time:
- "Spring forward" day: 23 hours (lose 1 hour)
- "Fall back" day: 25 hours (gain 1 hour)
- Only in regions observing DST
-
Time zone transitions:
- Crossing International Date Line can skip or repeat a day
- Country changing time zones can alter day length
-
Earth's actual rotation:
- Varies by ±1 millisecond seasonally
- Gradually slowing (~1.7 ms per century)
- But civil day remains fixed at 86,400 seconds
Historical:
- Ancient "seasonal hours" made days vary by season
- Equal 24-hour days standardized with mechanical clocks (1300s)
Conversion Table: Month to Day
| Month (mo) | Day (d) |
|---|---|
| 0.5 | 15.218 |
| 1 | 30.437 |
| 1.5 | 45.655 |
| 2 | 60.874 |
| 5 | 152.184 |
| 10 | 304.369 |
| 25 | 760.922 |
| 50 | 1,521.844 |
| 100 | 3,043.688 |
| 250 | 7,609.219 |
| 500 | 15,218.438 |
| 1,000 | 30,436.875 |
People Also Ask
How do I convert Month to Day?
To convert Month to Day, enter the value in Month in the calculator above. The conversion will happen automatically. Use our free online converter for instant and accurate results. You can also visit our time converter page to convert between other units in this category.
Learn more →What is the conversion factor from Month to Day?
The conversion factor depends on the specific relationship between Month and Day. You can find the exact conversion formula and factor on this page. Our calculator handles all calculations automatically. See the conversion table above for common values.
Can I convert Day back to Month?
Yes! You can easily convert Day back to Month by using the swap button (⇌) in the calculator above, or by visiting our Day to Month converter page. You can also explore other time conversions on our category page.
Learn more →What are common uses for Month and Day?
Month and Day are both standard units used in time measurements. They are commonly used in various applications including engineering, construction, cooking, and scientific research. Browse our time converter for more conversion options.
For more time conversion questions, visit our FAQ page or explore our conversion guides.
Helpful Conversion Guides
Learn more about unit conversion with our comprehensive guides:
All Time Conversions
Other Time Units and Conversions
Explore other time units and their conversion options:
- Second (s) • Month to Second
- Minute (min) • Month to Minute
- Hour (h) • Month to Hour
- Week (wk) • Month to Week
- Year (yr) • Month to Year
- Millisecond (ms) • Month to Millisecond
- Microsecond (μs) • Month to Microsecond
- Nanosecond (ns) • Month to Nanosecond
- Decade (dec) • Month to Decade
- Century (c) • Month to Century
Verified Against Authority Standards
All conversion formulas have been verified against international standards and authoritative sources to ensure maximum accuracy and reliability.
National Institute of Standards and Technology — Official time standards and definitions
Bureau International des Poids et Mesures — Definition of the SI base unit for time
Last verified: December 3, 2025