Second to Millennium Converter

Convert seconds to millennia with our free online time converter.

Quick Answer

1 Second = 3.168874e-11 millennia

Formula: Second × conversion factor = Millennium

Use the calculator below for instant, accurate conversions.

Our Accuracy Guarantee

All conversion formulas on UnitsConverter.io have been verified against NIST (National Institute of Standards and Technology) guidelines and international SI standards. Our calculations are accurate to 10 decimal places for standard conversions and use arbitrary precision arithmetic for astronomical units.

Last verified: December 2025Reviewed by: Sam Mathew, Software Engineer

Second to Millennium Calculator

How to Use the Second to Millennium Calculator:

  1. Enter the value you want to convert in the 'From' field (Second).
  2. The converted value in Millennium will appear automatically in the 'To' field.
  3. Use the dropdown menus to select different units within the Time category.
  4. Click the swap button (⇌) to reverse the conversion direction.
Share:

How to Convert Second to Millennium: Step-by-Step Guide

Converting Second to Millennium involves multiplying the value by a specific conversion factor, as shown in the formula below.

Formula:

1 Second = 3.1689e-11 millennia

Example Calculation:

Convert 60 seconds: 60 × 3.1689e-11 = 1.9013e-9 millennia

Disclaimer: For Reference Only

These conversion results are provided for informational purposes only. While we strive for accuracy, we make no guarantees regarding the precision of these results, especially for conversions involving extremely large or small numbers which may be subject to the inherent limitations of standard computer floating-point arithmetic.

Not for professional use. Results should be verified before use in any critical application. View our Terms of Service for more information.

What is a Second and a Millennium?

What Is a Second?

The second (symbol: s) is the SI base unit of time, defined with extraordinary precision using atomic physics rather than astronomical observations.

Official SI definition (since 1967): The second is the duration of 9,192,631,770 periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the caesium-133 atom at absolute zero temperature and at rest.

In simpler terms:

  • Caesium-133 atoms oscillate at a precise frequency when energized
  • One second equals exactly 9,192,631,770 of these oscillations
  • This provides a natural, unchanging standard independent of Earth's rotation

Why this matters: This atomic definition provides accuracy to better than 1 second in 100 million years for modern atomic clocks, enabling:

  • GPS navigation (accuracy requires nanosecond precision)
  • Global telecommunications synchronization
  • Scientific experiments requiring extreme precision
  • Financial transaction timestamps
  • Internet infrastructure coordination

Second vs. Other Time Units

Subdivisions of the second:

  • 1 decisecond (ds) = 0.1 s = 10⁻¹ s (rarely used)
  • 1 centisecond (cs) = 0.01 s = 10⁻² s (stopwatch hundredths)
  • 1 millisecond (ms) = 0.001 s = 10⁻³ s (computer operations)
  • 1 microsecond (μs) = 0.000001 s = 10⁻⁶ s (electronics, photography)
  • 1 nanosecond (ns) = 0.000000001 s = 10⁻⁹ s (computer processors, GPS)
  • 1 picosecond (ps) = 10⁻¹² s (laser physics, molecular vibrations)
  • 1 femtosecond (fs) = 10⁻¹⁵ s (ultrafast lasers, chemical reactions)

Multiples of the second:

  • 60 seconds = 1 minute
  • 3,600 seconds = 1 hour
  • 86,400 seconds = 1 day
  • 604,800 seconds = 1 week
  • 31,536,000 seconds = 1 year (365 days)
  • 31,557,600 seconds = 1 Julian year (365.25 days)

A millennium (plural: millennia) is a period of time consisting of 1,000 consecutive years. It represents the longest standard calendar unit in common usage, serving as a fundamental framework for:

  • Historical periodization (1st, 2nd, 3rd millennium CE)
  • Civilizational analysis (rise and fall of empires, cultural transformations)
  • Geological chronology (Holocene epoch subdivisions, climate periods)
  • Archaeological dating (prehistoric cultures, human migration patterns)
  • Religious eschatology (millennialism, apocalyptic prophecies)
  • Long-term planning (10,000 Year Clock, deep time thinking)

Millennium Boundaries: The 2000 vs. 2001 Debate

The Great Millennium Debate of 1999-2001 centered on when the 3rd millennium actually began:

Formal reckoning (technically correct):

  • 1st millennium CE: 1-1000
  • 2nd millennium CE: 1001-2000
  • 3rd millennium CE: 2001-3000

Why? Because there was no year 0 in the Gregorian calendar (1 BCE → 1 CE), the first millennium was years 1-1000, making 2001 the true start of the 3rd millennium.

Popular celebration (dominant in practice):

  • 1st millennium: "The first thousand years" (1-999, ending at 1000)
  • 2nd millennium: "The 1000s" (1000-1999)
  • 3rd millennium: "The 2000s onward" (2000-2999)

The Y2K Effect: On January 1, 2000, most of the world celebrated the new millennium despite pedantic arguments for 2001. The psychological significance of "flipping" from 1999 to 2000 overwhelmed technical correctness. Many institutions (including the U.S. Naval Observatory) officially recognized January 1, 2001, as the millennium start, but popular culture had already moved on.

Scientific Notation: Kiloyears (ka/kyr)

In geology, archaeology, and paleoclimatology, millennia are expressed as kiloyears:

  • ka or kyr = 1,000 years (kilo-annum or kiloyear)
  • Ma or Myr = 1,000,000 years (mega-annum or megayear)
  • Ga or Gyr = 1,000,000,000 years (giga-annum or gigayear)

Examples:

  • Last Glacial Maximum: 26.5-19 ka (26,500-19,000 years ago)
  • Agricultural Revolution: ~12 ka (12,000 years ago)
  • End of last ice age: ~11.7 ka (beginning of Holocene)
  • Modern humans in Europe: ~45 ka

Note: The Second is part of the imperial/US customary system, primarily used in the US, UK, and Canada for everyday measurements. The Millennium belongs to the imperial/US customary system.

History of the Second and Millennium

Ancient Origins: Babylonian Mathematics (3000 BCE)

The division of time into units of 60 has roots in ancient Babylonian sexagesimal (base-60) mathematics:

Why base-60?

  • Highly divisible: 60 has divisors 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60
  • Finger counting: Babylonians counted 12 finger segments (phalanges) on one hand using the thumb, repeated 5 times for the other hand (12 × 5 = 60)
  • Astronomical convenience: 360 days approximated the year (6 × 60), aligning with the 360-degree circle

Time divisions established:

  • 1 day = 24 hours (2 × 12)
  • 1 hour = 60 minutes
  • 1 minute = 60 seconds

This system spread through ancient Egypt, Greece, and Rome, persisting for over 4,000 years.

Medieval Development: Mechanical Clocks (1200s-1600s)

The word "second" derives from Medieval Latin "pars minuta secunda" meaning "second minute part" (the second division of the hour):

  • First division: Hour divided into 60 "pars minuta prima" (first minute parts) = minutes
  • Second division: Minute divided into 60 "pars minuta secunda" (second minute parts) = seconds

Early mechanical clocks (1200s-1300s):

  • Displayed only hours, no minute or second hands
  • Too imprecise to measure seconds accurately
  • Driven by falling weights and escapement mechanisms

Pendulum revolution (1656):

  • Christiaan Huygens invented the pendulum clock
  • First clocks accurate enough to measure seconds reliably
  • Pendulum period provided regular "tick" for second counting
  • Accuracy improved from 15 minutes/day to 15 seconds/day

Marine chronometers (1700s):

  • John Harrison developed precise clocks for navigation (1730s-1760s)
  • Accurate timekeeping enabled longitude determination at sea
  • Precision to within 1 second per day

Astronomical Definition: Mean Solar Second (1832-1967)

In 1832, the second was formally defined as 1/86,400 of a mean solar day:

  • Mean solar day: Average length of a solar day over a year (accounts for Earth's elliptical orbit)
  • 86,400 seconds: 24 hours × 60 minutes × 60 seconds

Problems with astronomical definition:

  1. Earth's rotation is irregular: Tidal friction gradually slows rotation (~2 milliseconds per century)
  2. Seasonal variations: Earth's orbit affects day length by milliseconds
  3. Unpredictable fluctuations: Earthquakes, atmospheric changes affect rotation
  4. Increasing demand for precision: Radio, telecommunications, science required better accuracy

By the 1950s, astronomical observations showed the "second" was not constant—the length varied by parts per million depending on the era.

Atomic Revolution: Caesium Standard (1955-1967)

1955 - First caesium atomic clock:

  • Louis Essen and Jack Parry at UK's National Physical Laboratory built the first caesium atomic clock
  • Demonstrated caesium-133 atoms oscillate at precisely 9,192,631,770 Hz
  • Accuracy: 1 second in 300 years (far exceeding astronomical clocks)

1967 - Official redefinition: The 13th General Conference on Weights and Measures (CGPM) redefined the second:

"The second is the duration of 9,192,631,770 periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the caesium-133 atom."

Why caesium-133?

  • Atomic property: Transition frequency is a fundamental constant of nature
  • Highly stable: Unaffected by temperature, pressure, or electromagnetic fields
  • Reproducible: Any caesium-133 atom behaves identically
  • Practical: Relatively easy to construct atomic clocks using caesium

Impact:

  • Timekeeping became independent of Earth's rotation
  • Precision improved from parts per million to parts per trillion
  • Enabled GPS, internet synchronization, telecommunications, and modern science

Modern Atomic Clocks (1990s-Present)

Caesium fountain clocks (1990s):

  • Atoms launched upward in "fountain" configuration
  • Gravity slows atoms, allowing longer measurement time
  • Accuracy: 1 second in 100 million years

Optical lattice clocks (2000s-2020s):

  • Use strontium or ytterbium atoms instead of caesium
  • Operate at optical frequencies (100,000× higher than caesium)
  • Accuracy: 1 second in 15 billion years (age of the universe!)
  • May redefine the second in future decades

Applications requiring atomic precision:

  • GPS satellites: Nanosecond errors cause position errors of ~1 foot
  • High-frequency trading: Microsecond timestamps for financial transactions
  • Telecommunications: Synchronizing cell towers and internet infrastructure
  • Science: Detecting gravitational waves, testing relativity, fundamental physics

Leap Seconds: Reconciling Atomic and Astronomical Time

The problem:

  • Atomic time (TAI): Runs at constant rate based on caesium clocks
  • Earth rotation (UT1): Slows gradually due to tidal friction
  • Difference: ~2 milliseconds per day (accumulates ~1 second every 18 months)

Solution: Leap seconds (since 1972):

  • Coordinated Universal Time (UTC) = atomic time adjusted to stay within 0.9 seconds of Earth rotation
  • Leap second: Extra second added (or removed) on June 30 or December 31
  • 27 leap seconds added between 1972-2016 (none since 2016)

Controversy:

  • Leap seconds cause problems for computer systems, GPS, networks
  • Debate ongoing about abolishing leap seconds in favor of pure atomic time
  • Possible change may occur in the 2030s

of the Millennium

Ancient Roots: The Power of 1,000

While ancient civilizations didn't use "millennium" terminology, they recognized the symbolic power of 1,000:

Mesopotamia (c. 3000 BCE):

  • Sumerian base-60 counting system sometimes grouped into larger cycles
  • Concept of vast cosmic cycles in Babylonian astronomy
  • Royal inscriptions proclaiming dynasties lasting "1,000 years"

Ancient Egypt (c. 3000-30 BCE):

  • Pharaohs wished to rule for "millions of years" (ḥḥ n rnpwt)
  • Concept of vast temporal cycles in creation myths
  • No specific millennium framework, but awareness of deep historical time

Ancient Greece and Rome (c. 800 BCE - 476 CE):

  • Greek historians like Herodotus tracked events across centuries
  • Roman historians (Livy, Tacitus) chronicled ab urbe condita ("from the founding of the city," 753 BCE)
  • Latin words "mille" (thousand) existed but weren't combined with "annus" (year) until later

Medieval Christianity: The Birth of "Millennium" (c. 400-1000 CE)

The term "millennium" emerged in Medieval Latin through Christian theology:

Book of Revelation (c. 95 CE):

  • Revelation 20:1-6 describes a 1,000-year reign of Christ following the defeat of Satan
  • "And I saw an angel come down from heaven... and he laid hold on the dragon... and bound him a thousand years"
  • Early Christian theologians debated whether this was literal or symbolic

Augustine of Hippo (c. 400 CE):

  • Argued in The City of God that the millennium was allegorical, representing the Church age between Christ's resurrection and Second Coming
  • Discouraged literal millennium expectations
  • His interpretation became dominant in Western Christianity

Millennial Anxiety of 999-1000 CE:

  • As the year 1000 approached, apocalyptic expectations spread across Christian Europe
  • Some chroniclers reported increased pilgrimages, property donations to churches, and fears of the Last Judgment
  • Historiographical debate: Modern scholars debate how widespread this anxiety truly was (some argue it was exaggerated by later writers)
  • The year 1000 passed without apocalypse, disappointing some millennialists

The Second Millennium: Medieval to Modern (1001-2000 CE)

Medieval Period (c. 1000-1500):

  • Little emphasis on millennium as a historical unit
  • Christian eschatology continued debating millennial prophecy
  • Historical consciousness focused on generations, reigns, and centuries

Enlightenment and Secular Millennialism (c. 1700-1900):

  • As Anno Domini dating spread, historians began using "1st millennium" and "2nd millennium" as periodization tools
  • Secular millennialism emerged: belief in human progress toward utopian futures
  • The 2nd millennium saw: Renaissance, Scientific Revolution, Enlightenment, Industrial Revolution, Democratic Revolutions

Late 19th Century Historical Consciousness:

  • Historians like Leopold von Ranke systematized historical periodization
  • Growing awareness that the year 2000 would mark a millennium transition
  • Academic interest in how the approach to 1000 CE shaped medieval culture

The Y2K Phenomenon: Approaching 2000 CE (1990-2001)

Dual Millennium Crisis:

1. Technical Crisis (Y2K Bug):

  • Many computer systems used 2-digit year codes (98, 99, 00...)
  • Fear that "00" would be interpreted as 1900, causing catastrophic failures in banking, utilities, aviation, nuclear systems
  • Estimated $300-600 billion spent globally on Y2K remediation
  • Result: Minimal disruptions occurred, leading to debate whether the threat was overhyped or prevention was successful

2. Cultural Phenomenon:

  • Unprecedented global synchronized celebration on December 31, 1999
  • Millennium summits, concerts, fireworks, time capsules
  • Sydney, Australia's midnight fireworks became the first major celebration broadcast worldwide
  • Times Square New York: 2 million attendees, 1 billion TV viewers globally

3. Millennial Movements:

  • Religious millennialism resurged (predictions of Second Coming, Rapture, apocalypse)
  • New Age movements declared "Age of Aquarius" dawning
  • Doomsday preppers stockpiled supplies for anticipated societal collapse
  • Philosophical reflections on humanity's progress: "Best of times or worst of times?"

The Great Millennium Debate:

  • Media, scholars, and pedants argued: Does the new millennium begin January 1, 2000 or 2001?
  • Most of the world celebrated 2000, ignoring the "no year zero" technicality
  • Arthur C. Clarke (author of 2001: A Space Odyssey) advocated for 2001 as the true start
  • Compromise: Some celebrated both years

Contemporary Usage: The 3rd Millennium (2001-Present)

Historical Periodization:

  • Historians now routinely use "1st millennium CE," "2nd millennium BCE," etc.
  • Increasing awareness of deep historical time beyond recorded history

Geological and Archaeological Timescales:

  • Kiloyear (ka) notation standard in scientific literature
  • Holocene Calendar proposed: Add 10,000 years to CE dates (2000 CE = 12,000 HE)
  • Recognition that human civilization (agriculture, cities, writing) emerged in the last 10-12 millennia

Long-Term Thinking Initiatives:

  • Long Now Foundation (founded 1996): Building a 10,000-Year Clock to encourage long-term thinking
  • Climate science projections extending to 2100, 2200, even 3000 CE
  • Nuclear waste warning systems designed to last 10,000 years
  • Concepts like "Cathedral Thinking" (projects spanning centuries/millennia)

Common Uses and Applications: seconds vs millennia

Explore the typical applications for both Second (imperial/US) and Millennium (imperial/US) to understand their common contexts.

Common Uses for seconds

The second is the universal foundation for all time measurement in modern civilization:

1. Timekeeping and Clocks

Everyday timekeeping:

  • Wristwatches and clocks display hours, minutes, seconds
  • Smartphones synchronize to atomic time via network
  • Wall clocks, alarm clocks, digital displays
  • Public time displays (train stations, airports, town squares)

Precision timekeeping:

  • Atomic clocks: Caesium, rubidium, hydrogen maser clocks
  • GPS satellites: Carry atomic clocks for navigation
  • Scientific facilities: National metrology institutes maintain primary time standards
  • Network Time Protocol (NTP): Synchronizes computer clocks to microsecond accuracy

2. Scientific Research and Experiments

Physics experiments:

  • Measuring particle lifetimes (nanoseconds to picoseconds)
  • Timing light pulses in lasers (femtoseconds)
  • Gravitational wave detection (millisecond timing precision)
  • Quantum mechanics experiments (Planck time: 10⁻⁴⁴ seconds)

Chemistry:

  • Reaction kinetics and rates
  • Spectroscopy (measuring light absorption/emission frequencies)
  • Femtochemistry (bond breaking/forming at femtosecond scale)

Biology:

  • Neural signal timing (milliseconds)
  • Cellular processes (seconds to hours)
  • Ecological cycles (days, seasons, years measured in seconds)

3. Computing and Digital Systems

Processor operations:

  • CPU clock speeds measured in GHz (billions of cycles/second)
  • Instruction execution times (nanoseconds)
  • Cache latency, memory access times

Software and programming:

  • Timestamps (Unix time: seconds since January 1, 1970)
  • Timeouts and delays
  • Animation frame rates (60 frames/second = 0.0167 s/frame)
  • Video frame rates (24, 30, 60 FPS)

Database and logging:

  • Transaction timestamps (millisecond or microsecond precision)
  • System logs with second-level granularity
  • Performance monitoring (operations/second)

4. Telecommunications and Networking

Network synchronization:

  • Cell towers synchronized to GPS time (nanosecond precision)
  • Internet infrastructure timing
  • 5G networks require nanosecond coordination
  • Precision Time Protocol (PTP) for industrial networks

Data transmission:

  • Bit rates measured in bits/second (Mbps, Gbps)
  • Latency measured in milliseconds
  • Packet timing and queuing

5. Navigation and GPS

Global Positioning System:

  • Atomic clocks on satellites (accuracy ~10 nanoseconds)
  • Signal travel time calculations
  • Position accuracy requires nanosecond precision
  • GNSS systems (GPS, GLONASS, Galileo, BeiDou)

Aviation:

  • Aircraft navigation timing
  • Air traffic control coordination
  • Flight duration measurements

6. Financial and Trading

High-frequency trading:

  • Microsecond timestamps on transactions
  • Trading algorithms execute in microseconds
  • Market data feeds timestamped to nanoseconds
  • Regulatory requirements for precise time-stamping

Banking:

  • Transaction timestamps
  • Interest calculations (per second for some instruments)
  • Automated trading systems

7. Sports and Athletics

Competition timing:

  • Track and field (0.01 second precision)
  • Swimming (0.01 second precision)
  • Skiing, bobsled (0.01 second precision)
  • Motor racing (0.001 second precision)

Training and performance:

  • Stopwatches for interval training
  • Heart rate monitors (beats/second)
  • Pace calculations (minutes per kilometer/mile)
  • Reaction time testing

8. Manufacturing and Industrial

Process control:

  • Machine cycle times (seconds)
  • Assembly line timing
  • Quality control measurements
  • Synchronization of robots and automation

Industrial timing:

  • Conveyor belt speeds
  • Injection molding cycle times (2-60 seconds typical)
  • 3D printing layer times
  • Chemical process durations

When to Use millennia

of the Millennium in Modern Contexts

1. Historical Education and Academic Research

Millennia provide the broadest standard framework for teaching and analyzing human history:

  • World History Courses: "The 1st millennium saw the rise of major world religions..."
  • Archaeological Reports: "Settlement patterns in the region from 5-3 ka..."
  • Historical Comparisons: "How did governance systems evolve over the 2nd millennium?"
  • Civilizational Studies: Tracing the rise, flourishing, and decline of civilizations across millennia

Academic Journals regularly use millennium-scale analysis in titles:

  • "Climate Change Across the Last Three Millennia"
  • "Urbanization Patterns in the 1st Millennium BCE"
  • "Linguistic Evolution Over Two Millennia"

2. Geological and Climate Science

Geologists and climate scientists routinely work with millennium timescales:

  • Holocene Epoch: Divided into three ages defined by thousand-year boundaries
  • Glacial Cycles: Ice ages and interglacials measured in millennia
  • Sea Level Change: "Sea levels rose 120 meters over 10 millennia as ice sheets melted"
  • Sedimentation Rates: Geological layers deposited over millennia

Kiloyear (ka) Notation:

  • Standard in scientific papers: "The 8.2 ka event disrupted North Atlantic circulation"
  • Allows precise dating: "Pottery shards dated to 7.3 ± 0.2 ka"

3. Cultural Heritage and Collective Identity

Millennia shape how cultures understand their history and continuity:

  • National Narratives: "China has continuous civilization spanning 5 millennia"
  • Indigenous Connections: Native American cultures documenting 10,000+ year connections to land
  • Linguistic Heritage: "Greek language has been spoken continuously for 3+ millennia"
  • Religious Traditions: Judaism, Hinduism, Buddhism claiming multi-millennial traditions

Millennium Celebrations:

  • Iceland celebrated 1,000 years of parliament (Althing) in 1930
  • Vatican celebrated 2,000 years of Christianity in 2000-2001
  • China emphasizes "5,000 years of civilization" in cultural diplomacy

4. Archaeological and Anthropological Dating

Archaeologists organize prehistoric and ancient history by millennia:

BCE/CE Millennia:

  • 3rd millennium BCE (3000-2001 BCE): Rise of early civilizations (Egypt, Mesopotamia, Indus Valley)
  • 2nd millennium BCE (2000-1001 BCE): Bronze Age, Mycenaean Greece, Shang Dynasty China
  • 1st millennium BCE (1000-1 BCE): Iron Age, Classical Greece, Roman Republic, Axial Age philosophers

Before Present (BP) Notation:

  • Often used with radiocarbon dating
  • "Before Present" = before 1950 CE
  • "The site was occupied from 12,000-10,000 BP" (= ~10,000-8,000 BCE)

5. Long-Term Forecasting and Futures Studies

While rare, some fields project millennia into the future:

Climate Modeling:

  • Some studies project global temperature and sea level through 3000 CE
  • "Irreversible ice sheet collapse may occur over the next 2 millennia"

Orbital Mechanics:

  • Solar system dynamics calculated millennia ahead
  • Eclipse predictions for thousands of years
  • Planetary positions for ancient astronomical events ("Did Plato see a specific comet in 347 BCE?")

Deep Geological Time:

  • Plate tectonics: "North America and Europe will close the Atlantic in ~200 million years"
  • Stellar evolution: "The Sun will enter red giant phase in ~5 billion years"

6. Philosophy and Long-Term Ethics

Philosophers and ethicists invoke millennium scales when discussing humanity's long-term responsibilities:

Longtermism Movement:

  • Focus on ensuring humanity's survival and flourishing over millennia
  • Questions like: "What obligations do we have to people living 10,000 years from now?"
  • Influential in effective altruism and existential risk communities

Environmental Ethics:

  • "We must preserve ecosystems for millennia to come"
  • Recognition that extinction is permanent across all future millennia
  • Concept of "intergenerational justice" across hundreds of generations

Technological Legacy:

  • "How should we design nuclear waste containment for 10 millennia?"
  • Digital preservation: "Will our digital records last even one millennium?"

7. Popular Culture and Symbolic Milestones

Millennia appear in popular culture as symbols of vast time:

Fiction and Film:

  • 2001: A Space Odyssey (Arthur C. Clarke): Millennium as threshold to new era
  • Foundation series (Isaac Asimov): Predicting galactic history across millennia
  • Dune (Frank Herbert): "In the year 10,191..." (10 millennia hence)

Music and Art:

  • Symphony performances at millennium celebrations
  • Time capsules buried for opening in 1,000 years
  • Millennium monuments and sculptures

Everyday Language:

  • "Turn of the millennium" as shorthand for late 1990s/early 2000s
  • "Millennial generation" (born ~1981-1996, coming of age around 2000)
  • "Millennium Falcon" (Star Wars) - name evokes vast time/space

Additional Unit Information

About Second (s)

What is the base unit of time in the SI system?

The second (s) is the base unit of time in the International System of Units (SI). It's one of the seven SI base units, alongside meter (length), kilogram (mass), ampere (current), kelvin (temperature), mole (amount of substance), and candela (luminous intensity).

All other time units (minute, hour, day, year) are derived from the second.

Why is the second defined using atoms?

The atomic definition provides a much more stable and precise standard than relying on Earth's rotation, which fluctuates.

Problems with astronomical definition:

  • Earth's rotation slows by ~2 milliseconds per century (tidal friction)
  • Seasonal variations affect day length
  • Unpredictable fluctuations from earthquakes, atmospheric changes
  • Accuracy limited to ~1 part per million

Advantages of atomic definition:

  • Fundamental constant: Caesium-133 transition frequency is a property of nature
  • Reproducible: Any caesium-133 atom behaves identically
  • Stable: Unaffected by external conditions (temperature, pressure)
  • Precise: Modern atomic clocks accurate to 1 second in 100 million years

Result: GPS, telecommunications, science, and technology require nanosecond precision impossible with astronomical timekeeping.

How many seconds are in a minute?

There are exactly 60 seconds in 1 minute.

This derives from ancient Babylonian base-60 (sexagesimal) mathematics, which established 60 as the standard division for time over 4,000 years ago.

Conversions:

  • 1 minute = 60 seconds
  • 2 minutes = 120 seconds
  • 5 minutes = 300 seconds
  • 10 minutes = 600 seconds

How many seconds are in an hour?

There are exactly 3,600 seconds in 1 hour.

Calculation:

  • 1 hour = 60 minutes
  • 1 minute = 60 seconds
  • 1 hour = 60 × 60 = 3,600 seconds

Conversions:

  • 1 hour = 3,600 seconds
  • 2 hours = 7,200 seconds
  • 12 hours = 43,200 seconds
  • 24 hours (1 day) = 86,400 seconds

How many seconds are in a day?

There are 86,400 seconds in 1 day (24 hours).

Calculation:

  • 1 day = 24 hours
  • 1 hour = 3,600 seconds
  • 1 day = 24 × 3,600 = 86,400 seconds

Breakdown:

  • 24 hours × 60 minutes/hour × 60 seconds/minute = 86,400 seconds

Note: This assumes a standard 24-hour day. Due to Earth's rotation irregularities, actual solar days vary by milliseconds. Leap seconds are occasionally added to keep atomic time synchronized with Earth rotation.

How many seconds are in a year?

A standard 365-day year contains 31,536,000 seconds.

Calculation:

  • 365 days × 24 hours/day × 60 minutes/hour × 60 seconds/minute
  • = 365 × 86,400
  • = 31,536,000 seconds

Variations:

  • Leap year (366 days): 31,622,400 seconds
  • Julian year (365.25 days, average): 31,557,600 seconds
  • Tropical year (365.2422 days, Earth orbit): 31,556,925 seconds

Fun fact: The song "Seasons of Love" from Rent states "525,600 minutes" in a year, which equals 31,536,000 seconds (365 days).

What is a millisecond?

A millisecond (ms) is one-thousandth of a second: 0.001 seconds or 10⁻³ seconds.

Conversions:

  • 1 second = 1,000 milliseconds
  • 1 millisecond = 0.001 seconds
  • 1 minute = 60,000 milliseconds

Common uses:

  • Computer response times (1-100 ms)
  • Network ping times (1-300 ms typical)
  • Human reaction time (~200 ms)
  • Video frame duration (60 FPS = 16.67 ms/frame)
  • Stopwatch hundredths (0.01 s = 10 ms)

What is a nanosecond?

A nanosecond (ns) is one-billionth of a second: 0.000000001 seconds or 10⁻⁹ seconds.

Conversions:

  • 1 second = 1,000,000,000 nanoseconds (1 billion)
  • 1 millisecond = 1,000,000 nanoseconds (1 million)
  • 1 microsecond = 1,000 nanoseconds

Reference points:

  • Light travels 30 cm (1 foot) in 1 nanosecond
  • Computer processor operations: ~0.2-1 nanosecond
  • GPS timing precision: ~10 nanoseconds
  • RAM memory access: ~50-100 nanoseconds

Grace Hopper's demonstration: Computer pioneer Grace Hopper famously distributed 30cm lengths of wire to represent "one nanosecond" (distance light travels in 1 ns) to illustrate the importance of speed in computing.

Why are there 60 seconds in a minute instead of 100?

The 60-second minute derives from ancient Babylonian base-60 (sexagesimal) mathematics developed around 3000 BCE, over 1,000 years before the decimal system.

Reasons for base-60:

1. High divisibility: 60 has 12 divisors: 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60

  • Easy to divide into halves, thirds, quarters, fifths, sixths
  • 100 (decimal) has only 9 divisors: 1, 2, 4, 5, 10, 20, 25, 50, 100

2. Finger counting method:

  • Count 12 finger segments (phalanges) on one hand using thumb
  • Track count on other hand: 12 × 5 fingers = 60

3. Astronomical convenience:

  • ~360 days per year ≈ 6 × 60
  • Circle divided into 360 degrees (6 × 60)
  • Babylonian astronomy used these divisions

4. Historical persistence: The system spread through Egyptian, Greek, and Roman civilizations and became too entrenched to change. When mechanical clocks developed in medieval Europe, they adopted the existing Babylonian time divisions.

Attempts to decimalize time:

  • French Revolutionary Calendar (1793-1805): 10-hour day, 100-minute hour, 100-second minute
  • Failed: Too difficult to change clocks, conversion from traditional system
  • Result: We still use Babylonian base-60 for time, but base-10 (decimal) for most other measurements

How accurate are atomic clocks?

Modern atomic clocks are extraordinarily accurate:

Caesium atomic clocks (standard):

  • Accuracy: 1 second in 100 million years
  • Precision: Parts per trillion (10⁻¹²)
  • Used in GPS satellites, national time standards

Caesium fountain clocks (advanced):

  • Accuracy: 1 second in 300 million years
  • Precision: Better than 10⁻¹⁵
  • Used by metrology institutes (NIST, PTB, NPL)

Optical lattice clocks (state-of-the-art):

  • Accuracy: 1 second in 15-30 billion years
  • Precision: 10⁻¹⁸ to 10⁻¹⁹
  • Use strontium, ytterbium, or aluminum ions
  • So precise they detect gravitational time dilation across centimeters of height

Comparison:

  • Quartz watch: 1 second in 1-10 days (10⁻⁵ accuracy)
  • Mechanical watch: 1-10 seconds per day (10⁻⁴ to 10⁻⁵)
  • Sundial: Minutes per day (10⁻³)
  • Atomic clock: 1 second in 100 million years (10⁻¹⁶)

Why this matters: GPS requires 10-nanosecond precision; a 1-microsecond error causes 300-meter position errors.

What are leap seconds and why do we need them?

Leap seconds are occasional one-second adjustments added to Coordinated Universal Time (UTC) to keep it synchronized with Earth's rotation.

The problem:

  • Atomic time (TAI): Runs at constant rate based on caesium clocks, unchanging
  • Earth rotation (UT1): Slows gradually due to tidal friction (~2 milliseconds per day longer)
  • Discrepancy: Accumulates ~1 second every 18-24 months

Solution:

  • Add (or theoretically remove) 1 second on June 30 or December 31
  • Keeps UTC within 0.9 seconds of Earth rotation time (UT1)
  • 27 leap seconds added between 1972 and 2016
  • No leap seconds since 2016 (Earth rotation has been slightly faster recently)

How it works: Instead of 23:59:59 → 00:00:00, the sequence is: 23:59:59 → 23:59:60 → 00:00:00 (leap second inserted)

Controversy:

  • Problems: Computer systems, GPS, networks struggle with leap seconds (software bugs, crashes)
  • Proposed solution: Abolish leap seconds, let UTC and UT1 drift apart
  • Debate: Ongoing since 2000s; decision may be made in 2026-2030s

Current status: Leap seconds remain in use, but their future is uncertain.


About Millennium (ka)

1. Why is the millennium important for understanding human history?

The millennium represents the longest standard calendar unit, making it ideal for analyzing civilizational-scale transformations that unfold across 40-50 human generations. Historical changes like the rise of religions (Christianity and Islam spreading across the 1st millennium), technological revolutions (printing press to internet across the 2nd millennium), and political systems (feudalism to democracy) become visible at millennium scale. Millennia help historians avoid both excessive granularity (year-by-year chronicles) and excessive abstraction (multi-million-year geological eras), providing the "Goldilocks" timescale for understanding how human societies evolve while remaining comprehensible to individual humans whose lifetimes span only 1/12th of a millennium.

2. How did the Y2K millennium celebrations differ globally?

The Year 2000 millennium celebration was history's first truly global synchronized event, with time zone-staggered festivities broadcast worldwide. Australia and New Zealand celebrated first (Sydney Harbor's fireworks watched by 1+ billion people), followed by Asia (Hong Kong, Tokyo), Europe (London, Paris, Rome), and finally the Americas (Times Square's iconic ball drop with 2 million attendees). Cultural differences shaped celebrations: Western nations emphasized technological achievement and future optimism; some Islamic nations downplayed CE calendar significance; China balanced official celebrations with awareness that their lunar calendar didn't align; Indigenous groups in Americas reflected on 500 years since European contact. The International Date Line in Pacific Ocean meant Kiribati's Caroline Island (renamed Millennium Island) technically celebrated first. Global media coverage created unprecedented collective experience of humanity marking shared temporal milestone.

3. What was the millennial anxiety of 999-1000 CE really like?

The popular image of medieval Europeans panicking about the year 1000 is somewhat exaggerated, though real anxiety existed. Contemporary chronicles are sparse and contradictory—some report increased pilgrimages, property donations to churches, and apocalyptic preaching, while others mention nothing unusual. Modern historians debate the extent: Georges Duby argued anxiety was widespread; Richard Landes (1999) claimed substantial "apocalyptic stirrings"; Sylvain Gouguenheim found minimal contemporary evidence. Key factors: 1) Anno Domini dating wasn't universal yet—many regions used different calendars; 2) Medieval record-keeping was limited; 3) Apocalyptic thinking was continuous in medieval Christianity, not uniquely focused on 1000; 4) Some anxiety may have been retrospectively attributed by 12th-century chroniclers. Consensus: Some educated clerics and nobles were aware of the millennial anniversary and discussed its apocalyptic significance, but mass panic among illiterate peasants (who likely didn't know the year number) was limited. The 1999-2000 millennium frenzy may have projected modern concerns backward.

4. Why do geologists use "ka" instead of "millennia"?

The kiloyear (ka) notation offers several advantages for scientific dating: 1) Precision: "12.5 ka" is clearer than "12 and a half millennia ago"; 2) Consistency with SI units: Kilo- (1,000) is standard metric prefix, creating consistency with kilograms, kilometers, etc.; 3) Avoids CE/BCE confusion: "ka" means years before present (defined as 1950 CE), eliminating calendar system debates; 4) Scalability: Easily extends to Ma (mega-annum, million years) and Ga (giga-annum, billion years) for older geological periods; 5) International standard: Works across languages without translation; 6) Radiocarbon convention: Integrated with C-14 dating which reports ages in "years BP" or "ka BP". For example, saying "The ice age ended 11.7 ka" is more scientifically precise than "The ice age ended about 12 millennia ago." The notation also avoids the awkward phrasing of "11.7 thousand years ago."

5. Can you actually predict events millennia in advance?

Prediction accuracy depends on the type of phenomenon: Highly predictable (orbital mechanics): Solar system dynamics can be calculated millennia ahead—we know eclipse dates for 3000 CE with high precision, planetary positions, comet returns (Halley's Comet will return in 2061, 4223, 6385...). Moderately predictable (geological processes): Plate tectonics moves continents ~1-10 cm/year, allowing rough predictions for millennia (Atlantic Ocean widening, Africa-Europe collision). Poorly predictable (climate): Models project ~100-200 years with declining confidence; millennium-scale projections are scenario-based ("if CO₂ levels remain X..."). Essentially unpredictable (human society): In 1025 CE, no one could predict Internet, democracy, or nuclear weapons by 2025 CE. Technological and social change follows non-linear, chaotic patterns. Lesson: Physical laws enable millennium-scale astronomical/geological predictions, but complex adaptive systems (climate, ecosystems, civilizations) become unpredictable beyond centuries. However, boundary conditions can be identified: "Earth will remain habitable for millennia, but not hundreds of millions of years."

6. How many ancestors do you have going back one millennium?

The mathematical answer is exponential: 2^40 ≈ 1.1 trillion ancestors (assuming 40 generations × 2 parents per generation). But Earth's population 1,000 years ago was only ~300-400 million! This paradox is resolved by pedigree collapse: Your family tree isn't a clean binary tree—it's a tangled network where the same ancestors appear multiple times through different lineages. Examples: If your parents are 4th cousins (common in small communities), your great-great-great-grandparents appear twice in your tree. Population genetics studies show that going back ~2,000-3,000 years: 1) You share at least one common ancestor with every person of your ancestry group (Europeans, East Asians, etc.); 2) Going back ~3,400 years, you likely share ancestors with all humans alive then who left descendants. So one millennium back (~1025 CE), your ancestors include many of the same people repeated thousands of times through different paths. You likely descend from Charlemagne (747-814 CE) through hundreds of different lineages simultaneously.

7. What's the longest continuously maintained human institution spanning millennia?

The Catholic Church claims the longest continuous institutional existence at ~2,000 years (since ~33 CE), with traceable papal succession and institutional continuity despite doctrinal/political changes. Chinese imperial examination system lasted ~1,300 years (605-1905 CE) with remarkable consistency. University of Al Qarawiyyin (Fez, Morocco) has operated since 859 CE (~1,165 years), potentially the oldest continuously operating university, though institutional continuity is debated. Japanese imperial dynasty claims ~2,600 years (mythological early dates are disputed; documented from ~500 CE = ~1,500 years). Buddhist monastic lineages have maintained unbroken transmission of teachings for ~2,500 years. Key insight: "Continuous institution" is fuzzy—most organizations evolve dramatically over millennia (Catholic Church of 325 CE vs. 2025 CE differ profoundly in doctrine, structure, language). Perhaps better framing: Which institutional identity has been claimed continuously longest? Churches, dynasties, and universities maintain identity through evolving practices, like the Ship of Theseus paradox applied to organizations.

8. Could human civilization collapse within this millennium?

Existential risk researchers estimate non-trivial probability of civilizational collapse or extinction this millennium from various threats: Nuclear war could kill billions and cause nuclear winter disrupting agriculture for decades (not extinction, but collapse). Climate change in worst scenarios could render large regions uninhabitable, triggering resource wars, mass migration, agricultural failure—potentially civilizational stress but unlikely complete extinction. Engineered pandemics (bioterrorism or accidental release) could potentially kill large percentages of global population. Artificial intelligence risk: If advanced AI becomes unaligned with human values, could pose existential threat (speculative, debated). Asteroid impact: ~1/100,000 chance of civilization-threatening impact per century. Supervolcanic eruption: Low probability but high impact. Estimates vary widely: Some researchers (Nick Bostrom, Toby Ord) estimate 10-20% existential risk this century; others consider this exaggerated. Reasons for cautious optimism: 1) Humans survived past bottlenecks (Toba supervolcano ~74 ka); 2) Technological resilience increasing; 3) Growing awareness of risks. Key point: Civilization likely faces serious disruptions this millennium, but complete extinction is less probable than transformation.

9. Why do some cultures count millennia differently than CE dating?

CE (Common Era) dating is just one of many calendar systems: Islamic Calendar (AH - Anno Hegirae): Year 1 AH = 622 CE (Muhammad's migration to Medina). As of 2025 CE = ~1446 AH. Based on lunar years (~354 days), so AH years accumulate faster. Jewish Calendar (AM - Anno Mundi): Counts from supposed creation date. 2025 CE = ~5785 AM. Hindu Calendars: Multiple systems, some counting from Kali Yuga beginning (~3102 BCE), others from different epochs. Buddhist Calendars: Year 1 = Buddha's death (~544 BCE in some traditions, ~486 BCE in others). 2025 CE = ~2569 BE. Chinese Calendar: Cycles of 60 years, sometimes counted from legendary Yellow Emperor (~2697 BCE). Persian Calendar: Counts from Muhammad's Hijra like Islamic calendar but uses solar years. Practical usage: Global commerce, diplomacy, and science use CE dating for interoperability, but cultural/religious communities maintain traditional calendars for internal use. Millennium celebrations were primarily CE-based because globalization and European colonial history made Gregorian calendar dominant.

10. What would you need to preserve for 1,000 years?

Preserving information/artifacts for a millennium faces technical, environmental, and social challenges: Physical media decay: Paper acidifies (300-500 years max); digital storage degrades (magnetic media: 10-30 years; optical discs: 50-100 years; flash drives: 10-30 years). Best options: 1) Stone tablets (Rosetta Stone survived 2,200 years); 2) M-DISC optical media (claimed 1,000-year lifespan, though unproven); 3) 5D optical data storage (quartz glass, experimentally stable for millions of years); 4) Analog microfilm (silver halide film: 500+ years in controlled conditions). Environmental control: Temperature/humidity stability, protection from water/fire/pests. Language changes: English of 1025 CE (Old English) is unintelligible to modern readers; English of 3025 CE will likely be equally foreign. Solution: Include translation aids, pictographic keys (like Voyager Golden Record). Social continuity: Institution must maintain preservation mission across 40-50 generations. Examples: Vatican Archives, Long Now Foundation's 10,000-Year Clock, Svalbard Global Seed Vault (designed for centuries). Best strategy: Redundancy (many copies in different locations) + active curation (periodic refreshing to new media) + institutional commitment (religious orders, universities, government archives).

11. How does the concept of a millennium appear in non-Western cultures?

Millennium as specific 1,000-year unit is largely a Western/Christian concept, but other cultures recognize vast time: Chinese civilization: Emphasizes 5,000-year continuity (五千年文明), though not broken into formal millennia. Dynastic histories tracked centuries, not millennia. Indian philosophy: Works with vast cosmic cycles—Yugas (ages) lasting hundreds of thousands of years; Kalpas (eons) lasting billions of years. A millennium is a tiny unit in this cosmology. Indigenous Australian Dreamtime: Conceives time cyclically, not linearly, with mythological events "outside time" rather than X years ago. Oral traditions preserve stories potentially spanning 10,000+ years. Mesoamerican Long Count Calendar: Mayan calendar tracked very long periods (Baktun = 394 years; 13 Baktuns = 5,125 years). The calendar "reset" in 2012 CE (end of 13th Baktun), causing apocalyptic speculation. Islamic scholarship: Uses Hijri calendar but also engages with millennium-scale historical analysis, especially when interfacing with Western academia. Modern globalization: CE dating and millennium framework have become lingua franca of international scholarship, but local cultural frameworks persist. The Y2K millennium was largely a Western/Christian cultural moment, though celebrated globally due to economic/technological integration.

12. What will the world be like one millennium from now (3025 CE)?

Honest answer: Unknowable. In 1025 CE, no one could have imagined 2025 CE's technology, political systems, or culture. Boundary conditions we can establish: 1) Physics will be the same: Gravity, electromagnetism, thermodynamics unchanged. 2) Earth will remain habitable: Sun's luminosity increases only ~10% per billion years; no solar threat for next million years. 3) Humans (or descendants) will likely exist: Evolutionary timescales are millions of years; biological humans won't evolve significantly in 1,000 years, but technology could radically transform human biology (genetic engineering, cybernetic enhancement, mind uploading?). Scenario thinking: Pessimistic: Civilizational collapse from climate change, nuclear war, pandemics → neo-medieval conditions, population collapse, technological loss. Moderate: Slow progress, challenges managed, recognizable but advanced societies. Optimistic: Post-scarcity economies, radical life extension, space colonization, AI-assisted problem-solving, disease elimination. Wild cards: Artificial general intelligence, nanotechnology, quantum computing, fusion energy, asteroid mining, alien contact (very low probability). Most likely: A mix—some regions thriving with advanced technology, others struggling with resource scarcity, climate impacts, and political instability. Lesson from past millennia: Change accelerates. More change occurred 1500-2000 CE than 500-1000 CE. If acceleration continues, 2025-3025 CE could see incomprehensibly greater transformation than 1025-2025 CE saw.


Conversion Table: Second to Millennium

Second (s)Millennium (ka)
0.50
10
1.50
20
50
100
250
500
1000
2500
5000
1,0000

People Also Ask

How do I convert Second to Millennium?

To convert Second to Millennium, enter the value in Second in the calculator above. The conversion will happen automatically. Use our free online converter for instant and accurate results. You can also visit our time converter page to convert between other units in this category.

Learn more →

What is the conversion factor from Second to Millennium?

The conversion factor depends on the specific relationship between Second and Millennium. You can find the exact conversion formula and factor on this page. Our calculator handles all calculations automatically. See the conversion table above for common values.

Can I convert Millennium back to Second?

Yes! You can easily convert Millennium back to Second by using the swap button (⇌) in the calculator above, or by visiting our Millennium to Second converter page. You can also explore other time conversions on our category page.

Learn more →

What are common uses for Second and Millennium?

Second and Millennium are both standard units used in time measurements. They are commonly used in various applications including engineering, construction, cooking, and scientific research. Browse our time converter for more conversion options.

For more time conversion questions, visit our FAQ page or explore our conversion guides.

All Time Conversions

Second to MinuteSecond to HourSecond to DaySecond to WeekSecond to MonthSecond to YearSecond to MillisecondSecond to MicrosecondSecond to NanosecondSecond to DecadeSecond to CenturySecond to FortnightSecond to Planck TimeSecond to ShakeSecond to Sidereal DaySecond to Sidereal YearMinute to SecondMinute to HourMinute to DayMinute to WeekMinute to MonthMinute to YearMinute to MillisecondMinute to MicrosecondMinute to NanosecondMinute to DecadeMinute to CenturyMinute to MillenniumMinute to FortnightMinute to Planck TimeMinute to ShakeMinute to Sidereal DayMinute to Sidereal YearHour to SecondHour to MinuteHour to DayHour to WeekHour to MonthHour to YearHour to MillisecondHour to MicrosecondHour to NanosecondHour to DecadeHour to CenturyHour to MillenniumHour to FortnightHour to Planck TimeHour to ShakeHour to Sidereal DayHour to Sidereal YearDay to SecondDay to MinuteDay to HourDay to WeekDay to MonthDay to YearDay to MillisecondDay to MicrosecondDay to NanosecondDay to DecadeDay to CenturyDay to MillenniumDay to FortnightDay to Planck TimeDay to ShakeDay to Sidereal DayDay to Sidereal YearWeek to SecondWeek to MinuteWeek to HourWeek to DayWeek to MonthWeek to YearWeek to MillisecondWeek to MicrosecondWeek to NanosecondWeek to DecadeWeek to CenturyWeek to MillenniumWeek to FortnightWeek to Planck TimeWeek to ShakeWeek to Sidereal DayWeek to Sidereal YearMonth to SecondMonth to MinuteMonth to HourMonth to DayMonth to WeekMonth to YearMonth to MillisecondMonth to MicrosecondMonth to NanosecondMonth to DecadeMonth to CenturyMonth to MillenniumMonth to FortnightMonth to Planck TimeMonth to ShakeMonth to Sidereal DayMonth to Sidereal YearYear to SecondYear to MinuteYear to HourYear to DayYear to WeekYear to MonthYear to MillisecondYear to MicrosecondYear to NanosecondYear to DecadeYear to CenturyYear to MillenniumYear to FortnightYear to Planck TimeYear to ShakeYear to Sidereal DayYear to Sidereal YearMillisecond to SecondMillisecond to Minute

Verified Against Authority Standards

All conversion formulas have been verified against international standards and authoritative sources to ensure maximum accuracy and reliability.

NIST Time and Frequency

National Institute of Standards and TechnologyOfficial time standards and definitions

BIPM Second Definition

Bureau International des Poids et MesuresDefinition of the SI base unit for time

Last verified: December 3, 2025