Second to Millisecond Converter
Convert seconds to milliseconds with our free online time converter.
Quick Answer
1 Second = 1000 milliseconds
Formula: Second × conversion factor = Millisecond
Use the calculator below for instant, accurate conversions.
Our Accuracy Guarantee
All conversion formulas on UnitsConverter.io have been verified against NIST (National Institute of Standards and Technology) guidelines and international SI standards. Our calculations are accurate to 10 decimal places for standard conversions and use arbitrary precision arithmetic for astronomical units.
Second to Millisecond Calculator
How to Use the Second to Millisecond Calculator:
- Enter the value you want to convert in the 'From' field (Second).
- The converted value in Millisecond will appear automatically in the 'To' field.
- Use the dropdown menus to select different units within the Time category.
- Click the swap button (⇌) to reverse the conversion direction.
How to Convert Second to Millisecond: Step-by-Step Guide
Converting Second to Millisecond involves multiplying the value by a specific conversion factor, as shown in the formula below.
Formula:
1 Second = 1000 millisecondsExample Calculation:
Convert 60 seconds: 60 × 1000 = 6.0000e+4 milliseconds
Disclaimer: For Reference Only
These conversion results are provided for informational purposes only. While we strive for accuracy, we make no guarantees regarding the precision of these results, especially for conversions involving extremely large or small numbers which may be subject to the inherent limitations of standard computer floating-point arithmetic.
Not for professional use. Results should be verified before use in any critical application. View our Terms of Service for more information.
Need to convert to other time units?
View all Time conversions →What is a Second and a Millisecond?
What Is a Second?
The second (symbol: s) is the SI base unit of time, defined with extraordinary precision using atomic physics rather than astronomical observations.
Official SI definition (since 1967): The second is the duration of 9,192,631,770 periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the caesium-133 atom at absolute zero temperature and at rest.
In simpler terms:
- Caesium-133 atoms oscillate at a precise frequency when energized
- One second equals exactly 9,192,631,770 of these oscillations
- This provides a natural, unchanging standard independent of Earth's rotation
Why this matters: This atomic definition provides accuracy to better than 1 second in 100 million years for modern atomic clocks, enabling:
- GPS navigation (accuracy requires nanosecond precision)
- Global telecommunications synchronization
- Scientific experiments requiring extreme precision
- Financial transaction timestamps
- Internet infrastructure coordination
Second vs. Other Time Units
Subdivisions of the second:
- 1 decisecond (ds) = 0.1 s = 10⁻¹ s (rarely used)
- 1 centisecond (cs) = 0.01 s = 10⁻² s (stopwatch hundredths)
- 1 millisecond (ms) = 0.001 s = 10⁻³ s (computer operations)
- 1 microsecond (μs) = 0.000001 s = 10⁻⁶ s (electronics, photography)
- 1 nanosecond (ns) = 0.000000001 s = 10⁻⁹ s (computer processors, GPS)
- 1 picosecond (ps) = 10⁻¹² s (laser physics, molecular vibrations)
- 1 femtosecond (fs) = 10⁻¹⁵ s (ultrafast lasers, chemical reactions)
Multiples of the second:
- 60 seconds = 1 minute
- 3,600 seconds = 1 hour
- 86,400 seconds = 1 day
- 604,800 seconds = 1 week
- 31,536,000 seconds = 1 year (365 days)
- 31,557,600 seconds = 1 Julian year (365.25 days)
A millisecond is a unit of time equal to one-thousandth (1/1,000) of a second.
Note: The Second is part of the imperial/US customary system, primarily used in the US, UK, and Canada for everyday measurements. The Millisecond belongs to the imperial/US customary system.
History of the Second and Millisecond
Ancient Origins: Babylonian Mathematics (3000 BCE)
The division of time into units of 60 has roots in ancient Babylonian sexagesimal (base-60) mathematics:
Why base-60?
- Highly divisible: 60 has divisors 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60
- Finger counting: Babylonians counted 12 finger segments (phalanges) on one hand using the thumb, repeated 5 times for the other hand (12 × 5 = 60)
- Astronomical convenience: 360 days approximated the year (6 × 60), aligning with the 360-degree circle
Time divisions established:
- 1 day = 24 hours (2 × 12)
- 1 hour = 60 minutes
- 1 minute = 60 seconds
This system spread through ancient Egypt, Greece, and Rome, persisting for over 4,000 years.
Medieval Development: Mechanical Clocks (1200s-1600s)
The word "second" derives from Medieval Latin "pars minuta secunda" meaning "second minute part" (the second division of the hour):
- First division: Hour divided into 60 "pars minuta prima" (first minute parts) = minutes
- Second division: Minute divided into 60 "pars minuta secunda" (second minute parts) = seconds
Early mechanical clocks (1200s-1300s):
- Displayed only hours, no minute or second hands
- Too imprecise to measure seconds accurately
- Driven by falling weights and escapement mechanisms
Pendulum revolution (1656):
- Christiaan Huygens invented the pendulum clock
- First clocks accurate enough to measure seconds reliably
- Pendulum period provided regular "tick" for second counting
- Accuracy improved from 15 minutes/day to 15 seconds/day
Marine chronometers (1700s):
- John Harrison developed precise clocks for navigation (1730s-1760s)
- Accurate timekeeping enabled longitude determination at sea
- Precision to within 1 second per day
Astronomical Definition: Mean Solar Second (1832-1967)
In 1832, the second was formally defined as 1/86,400 of a mean solar day:
- Mean solar day: Average length of a solar day over a year (accounts for Earth's elliptical orbit)
- 86,400 seconds: 24 hours × 60 minutes × 60 seconds
Problems with astronomical definition:
- Earth's rotation is irregular: Tidal friction gradually slows rotation (~2 milliseconds per century)
- Seasonal variations: Earth's orbit affects day length by milliseconds
- Unpredictable fluctuations: Earthquakes, atmospheric changes affect rotation
- Increasing demand for precision: Radio, telecommunications, science required better accuracy
By the 1950s, astronomical observations showed the "second" was not constant—the length varied by parts per million depending on the era.
Atomic Revolution: Caesium Standard (1955-1967)
1955 - First caesium atomic clock:
- Louis Essen and Jack Parry at UK's National Physical Laboratory built the first caesium atomic clock
- Demonstrated caesium-133 atoms oscillate at precisely 9,192,631,770 Hz
- Accuracy: 1 second in 300 years (far exceeding astronomical clocks)
1967 - Official redefinition: The 13th General Conference on Weights and Measures (CGPM) redefined the second:
"The second is the duration of 9,192,631,770 periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the caesium-133 atom."
Why caesium-133?
- Atomic property: Transition frequency is a fundamental constant of nature
- Highly stable: Unaffected by temperature, pressure, or electromagnetic fields
- Reproducible: Any caesium-133 atom behaves identically
- Practical: Relatively easy to construct atomic clocks using caesium
Impact:
- Timekeeping became independent of Earth's rotation
- Precision improved from parts per million to parts per trillion
- Enabled GPS, internet synchronization, telecommunications, and modern science
Modern Atomic Clocks (1990s-Present)
Caesium fountain clocks (1990s):
- Atoms launched upward in "fountain" configuration
- Gravity slows atoms, allowing longer measurement time
- Accuracy: 1 second in 100 million years
Optical lattice clocks (2000s-2020s):
- Use strontium or ytterbium atoms instead of caesium
- Operate at optical frequencies (100,000× higher than caesium)
- Accuracy: 1 second in 15 billion years (age of the universe!)
- May redefine the second in future decades
Applications requiring atomic precision:
- GPS satellites: Nanosecond errors cause position errors of ~1 foot
- High-frequency trading: Microsecond timestamps for financial transactions
- Telecommunications: Synchronizing cell towers and internet infrastructure
- Science: Detecting gravitational waves, testing relativity, fundamental physics
Leap Seconds: Reconciling Atomic and Astronomical Time
The problem:
- Atomic time (TAI): Runs at constant rate based on caesium clocks
- Earth rotation (UT1): Slows gradually due to tidal friction
- Difference: ~2 milliseconds per day (accumulates ~1 second every 18 months)
Solution: Leap seconds (since 1972):
- Coordinated Universal Time (UTC) = atomic time adjusted to stay within 0.9 seconds of Earth rotation
- Leap second: Extra second added (or removed) on June 30 or December 31
- 27 leap seconds added between 1972-2016 (none since 2016)
Controversy:
- Leap seconds cause problems for computer systems, GPS, networks
- Debate ongoing about abolishing leap seconds in favor of pure atomic time
- Possible change may occur in the 2030s
The millisecond is derived from the SI base unit, the second, using the metric prefix 'milli-', indicating a factor of 10⁻³. Its common usage grew with the need for finer time measurements in science and technology, particularly in fields like computing and electronics.
Common Uses and Applications: seconds vs milliseconds
Explore the typical applications for both Second (imperial/US) and Millisecond (imperial/US) to understand their common contexts.
Common Uses for seconds
The second is the universal foundation for all time measurement in modern civilization:
1. Timekeeping and Clocks
Everyday timekeeping:
- Wristwatches and clocks display hours, minutes, seconds
- Smartphones synchronize to atomic time via network
- Wall clocks, alarm clocks, digital displays
- Public time displays (train stations, airports, town squares)
Precision timekeeping:
- Atomic clocks: Caesium, rubidium, hydrogen maser clocks
- GPS satellites: Carry atomic clocks for navigation
- Scientific facilities: National metrology institutes maintain primary time standards
- Network Time Protocol (NTP): Synchronizes computer clocks to microsecond accuracy
2. Scientific Research and Experiments
Physics experiments:
- Measuring particle lifetimes (nanoseconds to picoseconds)
- Timing light pulses in lasers (femtoseconds)
- Gravitational wave detection (millisecond timing precision)
- Quantum mechanics experiments (Planck time: 10⁻⁴⁴ seconds)
Chemistry:
- Reaction kinetics and rates
- Spectroscopy (measuring light absorption/emission frequencies)
- Femtochemistry (bond breaking/forming at femtosecond scale)
Biology:
- Neural signal timing (milliseconds)
- Cellular processes (seconds to hours)
- Ecological cycles (days, seasons, years measured in seconds)
3. Computing and Digital Systems
Processor operations:
- CPU clock speeds measured in GHz (billions of cycles/second)
- Instruction execution times (nanoseconds)
- Cache latency, memory access times
Software and programming:
- Timestamps (Unix time: seconds since January 1, 1970)
- Timeouts and delays
- Animation frame rates (60 frames/second = 0.0167 s/frame)
- Video frame rates (24, 30, 60 FPS)
Database and logging:
- Transaction timestamps (millisecond or microsecond precision)
- System logs with second-level granularity
- Performance monitoring (operations/second)
4. Telecommunications and Networking
Network synchronization:
- Cell towers synchronized to GPS time (nanosecond precision)
- Internet infrastructure timing
- 5G networks require nanosecond coordination
- Precision Time Protocol (PTP) for industrial networks
Data transmission:
- Bit rates measured in bits/second (Mbps, Gbps)
- Latency measured in milliseconds
- Packet timing and queuing
5. Navigation and GPS
Global Positioning System:
- Atomic clocks on satellites (accuracy ~10 nanoseconds)
- Signal travel time calculations
- Position accuracy requires nanosecond precision
- GNSS systems (GPS, GLONASS, Galileo, BeiDou)
Aviation:
- Aircraft navigation timing
- Air traffic control coordination
- Flight duration measurements
6. Financial and Trading
High-frequency trading:
- Microsecond timestamps on transactions
- Trading algorithms execute in microseconds
- Market data feeds timestamped to nanoseconds
- Regulatory requirements for precise time-stamping
Banking:
- Transaction timestamps
- Interest calculations (per second for some instruments)
- Automated trading systems
7. Sports and Athletics
Competition timing:
- Track and field (0.01 second precision)
- Swimming (0.01 second precision)
- Skiing, bobsled (0.01 second precision)
- Motor racing (0.001 second precision)
Training and performance:
- Stopwatches for interval training
- Heart rate monitors (beats/second)
- Pace calculations (minutes per kilometer/mile)
- Reaction time testing
8. Manufacturing and Industrial
Process control:
- Machine cycle times (seconds)
- Assembly line timing
- Quality control measurements
- Synchronization of robots and automation
Industrial timing:
- Conveyor belt speeds
- Injection molding cycle times (2-60 seconds typical)
- 3D printing layer times
- Chemical process durations
When to Use milliseconds
- Computing: Measuring network latency (ping times), hard drive seek times, human reaction times in psychological tests, frame duration in video (e.g., 60 fps is ~16.7 ms per frame).
- Audio: Measuring delays and processing times in audio signals.
- Sports: Timing in races where differences are extremely small (e.g., swimming, track and field).
- Science: Measuring short-duration events, such as the firing of a neuron or rapid chemical processes.
- User Interface: Often used as a target for response times in interactive systems (e.g., aiming for under 100 ms for a feeling of instant response).
Additional Unit Information
About Second (s)
What is the base unit of time in the SI system?
The second (s) is the base unit of time in the International System of Units (SI). It's one of the seven SI base units, alongside meter (length), kilogram (mass), ampere (current), kelvin (temperature), mole (amount of substance), and candela (luminous intensity).
All other time units (minute, hour, day, year) are derived from the second.
Why is the second defined using atoms?
The atomic definition provides a much more stable and precise standard than relying on Earth's rotation, which fluctuates.
Problems with astronomical definition:
- Earth's rotation slows by ~2 milliseconds per century (tidal friction)
- Seasonal variations affect day length
- Unpredictable fluctuations from earthquakes, atmospheric changes
- Accuracy limited to ~1 part per million
Advantages of atomic definition:
- Fundamental constant: Caesium-133 transition frequency is a property of nature
- Reproducible: Any caesium-133 atom behaves identically
- Stable: Unaffected by external conditions (temperature, pressure)
- Precise: Modern atomic clocks accurate to 1 second in 100 million years
Result: GPS, telecommunications, science, and technology require nanosecond precision impossible with astronomical timekeeping.
How many seconds are in a minute?
There are exactly 60 seconds in 1 minute.
This derives from ancient Babylonian base-60 (sexagesimal) mathematics, which established 60 as the standard division for time over 4,000 years ago.
Conversions:
- 1 minute = 60 seconds
- 2 minutes = 120 seconds
- 5 minutes = 300 seconds
- 10 minutes = 600 seconds
How many seconds are in an hour?
There are exactly 3,600 seconds in 1 hour.
Calculation:
- 1 hour = 60 minutes
- 1 minute = 60 seconds
- 1 hour = 60 × 60 = 3,600 seconds
Conversions:
- 1 hour = 3,600 seconds
- 2 hours = 7,200 seconds
- 12 hours = 43,200 seconds
- 24 hours (1 day) = 86,400 seconds
How many seconds are in a day?
There are 86,400 seconds in 1 day (24 hours).
Calculation:
- 1 day = 24 hours
- 1 hour = 3,600 seconds
- 1 day = 24 × 3,600 = 86,400 seconds
Breakdown:
- 24 hours × 60 minutes/hour × 60 seconds/minute = 86,400 seconds
Note: This assumes a standard 24-hour day. Due to Earth's rotation irregularities, actual solar days vary by milliseconds. Leap seconds are occasionally added to keep atomic time synchronized with Earth rotation.
How many seconds are in a year?
A standard 365-day year contains 31,536,000 seconds.
Calculation:
- 365 days × 24 hours/day × 60 minutes/hour × 60 seconds/minute
- = 365 × 86,400
- = 31,536,000 seconds
Variations:
- Leap year (366 days): 31,622,400 seconds
- Julian year (365.25 days, average): 31,557,600 seconds
- Tropical year (365.2422 days, Earth orbit): 31,556,925 seconds
Fun fact: The song "Seasons of Love" from Rent states "525,600 minutes" in a year, which equals 31,536,000 seconds (365 days).
What is a millisecond?
A millisecond (ms) is one-thousandth of a second: 0.001 seconds or 10⁻³ seconds.
Conversions:
- 1 second = 1,000 milliseconds
- 1 millisecond = 0.001 seconds
- 1 minute = 60,000 milliseconds
Common uses:
- Computer response times (1-100 ms)
- Network ping times (1-300 ms typical)
- Human reaction time (~200 ms)
- Video frame duration (60 FPS = 16.67 ms/frame)
- Stopwatch hundredths (0.01 s = 10 ms)
What is a nanosecond?
A nanosecond (ns) is one-billionth of a second: 0.000000001 seconds or 10⁻⁹ seconds.
Conversions:
- 1 second = 1,000,000,000 nanoseconds (1 billion)
- 1 millisecond = 1,000,000 nanoseconds (1 million)
- 1 microsecond = 1,000 nanoseconds
Reference points:
- Light travels 30 cm (1 foot) in 1 nanosecond
- Computer processor operations: ~0.2-1 nanosecond
- GPS timing precision: ~10 nanoseconds
- RAM memory access: ~50-100 nanoseconds
Grace Hopper's demonstration: Computer pioneer Grace Hopper famously distributed 30cm lengths of wire to represent "one nanosecond" (distance light travels in 1 ns) to illustrate the importance of speed in computing.
Why are there 60 seconds in a minute instead of 100?
The 60-second minute derives from ancient Babylonian base-60 (sexagesimal) mathematics developed around 3000 BCE, over 1,000 years before the decimal system.
Reasons for base-60:
1. High divisibility: 60 has 12 divisors: 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60
- Easy to divide into halves, thirds, quarters, fifths, sixths
- 100 (decimal) has only 9 divisors: 1, 2, 4, 5, 10, 20, 25, 50, 100
2. Finger counting method:
- Count 12 finger segments (phalanges) on one hand using thumb
- Track count on other hand: 12 × 5 fingers = 60
3. Astronomical convenience:
- ~360 days per year ≈ 6 × 60
- Circle divided into 360 degrees (6 × 60)
- Babylonian astronomy used these divisions
4. Historical persistence: The system spread through Egyptian, Greek, and Roman civilizations and became too entrenched to change. When mechanical clocks developed in medieval Europe, they adopted the existing Babylonian time divisions.
Attempts to decimalize time:
- French Revolutionary Calendar (1793-1805): 10-hour day, 100-minute hour, 100-second minute
- Failed: Too difficult to change clocks, conversion from traditional system
- Result: We still use Babylonian base-60 for time, but base-10 (decimal) for most other measurements
How accurate are atomic clocks?
Modern atomic clocks are extraordinarily accurate:
Caesium atomic clocks (standard):
- Accuracy: 1 second in 100 million years
- Precision: Parts per trillion (10⁻¹²)
- Used in GPS satellites, national time standards
Caesium fountain clocks (advanced):
- Accuracy: 1 second in 300 million years
- Precision: Better than 10⁻¹⁵
- Used by metrology institutes (NIST, PTB, NPL)
Optical lattice clocks (state-of-the-art):
- Accuracy: 1 second in 15-30 billion years
- Precision: 10⁻¹⁸ to 10⁻¹⁹
- Use strontium, ytterbium, or aluminum ions
- So precise they detect gravitational time dilation across centimeters of height
Comparison:
- Quartz watch: 1 second in 1-10 days (10⁻⁵ accuracy)
- Mechanical watch: 1-10 seconds per day (10⁻⁴ to 10⁻⁵)
- Sundial: Minutes per day (10⁻³)
- Atomic clock: 1 second in 100 million years (10⁻¹⁶)
Why this matters: GPS requires 10-nanosecond precision; a 1-microsecond error causes 300-meter position errors.
What are leap seconds and why do we need them?
Leap seconds are occasional one-second adjustments added to Coordinated Universal Time (UTC) to keep it synchronized with Earth's rotation.
The problem:
- Atomic time (TAI): Runs at constant rate based on caesium clocks, unchanging
- Earth rotation (UT1): Slows gradually due to tidal friction (~2 milliseconds per day longer)
- Discrepancy: Accumulates ~1 second every 18-24 months
Solution:
- Add (or theoretically remove) 1 second on June 30 or December 31
- Keeps UTC within 0.9 seconds of Earth rotation time (UT1)
- 27 leap seconds added between 1972 and 2016
- No leap seconds since 2016 (Earth rotation has been slightly faster recently)
How it works: Instead of 23:59:59 → 00:00:00, the sequence is: 23:59:59 → 23:59:60 → 00:00:00 (leap second inserted)
Controversy:
- Problems: Computer systems, GPS, networks struggle with leap seconds (software bugs, crashes)
- Proposed solution: Abolish leap seconds, let UTC and UT1 drift apart
- Debate: Ongoing since 2000s; decision may be made in 2026-2030s
Current status: Leap seconds remain in use, but their future is uncertain.
About Millisecond (ms)
How many milliseconds are in one second?
There are 1,000 milliseconds in a second.
How many milliseconds are in one minute?
There are 60,000 milliseconds in a minute (1000 ms/s * 60 s/min).
Is a millisecond a long time for a computer?
In computing terms, a millisecond can be quite long. Processors perform millions of operations in a millisecond. Network latency is often measured in tens or hundreds of milliseconds.
Conversion Table: Second to Millisecond
| Second (s) | Millisecond (ms) |
|---|---|
| 0.5 | 500 |
| 1 | 1,000 |
| 1.5 | 1,500 |
| 2 | 2,000 |
| 5 | 5,000 |
| 10 | 10,000 |
| 25 | 25,000 |
| 50 | 50,000 |
| 100 | 100,000 |
| 250 | 250,000 |
| 500 | 500,000 |
| 1,000 | 1,000,000 |
People Also Ask
How do I convert Second to Millisecond?
To convert Second to Millisecond, enter the value in Second in the calculator above. The conversion will happen automatically. Use our free online converter for instant and accurate results. You can also visit our time converter page to convert between other units in this category.
Learn more →What is the conversion factor from Second to Millisecond?
The conversion factor depends on the specific relationship between Second and Millisecond. You can find the exact conversion formula and factor on this page. Our calculator handles all calculations automatically. See the conversion table above for common values.
Can I convert Millisecond back to Second?
Yes! You can easily convert Millisecond back to Second by using the swap button (⇌) in the calculator above, or by visiting our Millisecond to Second converter page. You can also explore other time conversions on our category page.
Learn more →What are common uses for Second and Millisecond?
Second and Millisecond are both standard units used in time measurements. They are commonly used in various applications including engineering, construction, cooking, and scientific research. Browse our time converter for more conversion options.
For more time conversion questions, visit our FAQ page or explore our conversion guides.
Helpful Conversion Guides
Learn more about unit conversion with our comprehensive guides:
All Time Conversions
Other Time Units and Conversions
Explore other time units and their conversion options:
Verified Against Authority Standards
All conversion formulas have been verified against international standards and authoritative sources to ensure maximum accuracy and reliability.
National Institute of Standards and Technology — Official time standards and definitions
Bureau International des Poids et Mesures — Definition of the SI base unit for time
Last verified: December 3, 2025