Sidereal Day to Millennium Converter
Convert sidereal days to millennia with our free online time converter.
Quick Answer
1 Sidereal Day = 0.00000273 millennia
Formula: Sidereal Day × conversion factor = Millennium
Use the calculator below for instant, accurate conversions.
Our Accuracy Guarantee
All conversion formulas on UnitsConverter.io have been verified against NIST (National Institute of Standards and Technology) guidelines and international SI standards. Our calculations are accurate to 10 decimal places for standard conversions and use arbitrary precision arithmetic for astronomical units.
Sidereal Day to Millennium Calculator
How to Use the Sidereal Day to Millennium Calculator:
- Enter the value you want to convert in the 'From' field (Sidereal Day).
- The converted value in Millennium will appear automatically in the 'To' field.
- Use the dropdown menus to select different units within the Time category.
- Click the swap button (⇌) to reverse the conversion direction.
How to Convert Sidereal Day to Millennium: Step-by-Step Guide
Converting Sidereal Day to Millennium involves multiplying the value by a specific conversion factor, as shown in the formula below.
Formula:
1 Sidereal Day = 2.7304e-6 millenniaExample Calculation:
Convert 60 sidereal days: 60 × 2.7304e-6 = 0.000163826 millennia
Disclaimer: For Reference Only
These conversion results are provided for informational purposes only. While we strive for accuracy, we make no guarantees regarding the precision of these results, especially for conversions involving extremely large or small numbers which may be subject to the inherent limitations of standard computer floating-point arithmetic.
Not for professional use. Results should be verified before use in any critical application. View our Terms of Service for more information.
Need to convert to other time units?
View all Time conversions →What is a Sidereal Day and a Millennium?
What Is a Sidereal Day?
A sidereal day is the time required for Earth to complete one full rotation (360 degrees) on its axis relative to the fixed background stars.
Precise value: 1 sidereal day = 86,164.0905 seconds (mean sidereal day) = 23 hours, 56 minutes, 4.0905 seconds
Sidereal vs. Solar Day
Sidereal day (stellar reference):
- Earth's rotation relative to distant stars
- Duration: 23h 56m 4.091s
- Used by astronomers for telescope pointing
Solar day (Sun reference):
- Earth's rotation relative to the Sun
- Duration: 24h 00m 00s (mean solar day)
- Used for civil timekeeping (clocks, calendars)
The difference: ~3 minutes 56 seconds
Why Are They Different?
The sidereal-solar day difference arises from Earth's orbital motion around the Sun:
- Start position: Earth completes one full 360° rotation relative to stars (1 sidereal day)
- Orbital motion: During that rotation, Earth has moved ~1° along its orbit around the Sun
- Extra rotation needed: Earth must rotate an additional ~1° (~4 minutes) to bring the Sun back to the same position in the sky
- Result: Solar day = sidereal day + ~4 minutes
Analogy: Imagine walking around a merry-go-round while it spins. If you walk one full circle relative to the surrounding park (sidereal), you'll need to walk a bit farther to return to the same position relative to the merry-go-round center (solar).
One Extra Day Per Year
A surprising consequence: There is one more sidereal day than solar day in a year!
- Solar year: 365.242199 solar days
- Sidereal year: 365.256363 sidereal days
- Extra sidereal days: 366.256363 - 365.242199 ≈ 1 extra day
Why? Earth makes 366.25 full rotations relative to the stars during one orbit, but we only experience 365.25 sunrises because we're moving around the Sun.
A millennium (plural: millennia) is a period of time consisting of 1,000 consecutive years. It represents the longest standard calendar unit in common usage, serving as a fundamental framework for:
- Historical periodization (1st, 2nd, 3rd millennium CE)
- Civilizational analysis (rise and fall of empires, cultural transformations)
- Geological chronology (Holocene epoch subdivisions, climate periods)
- Archaeological dating (prehistoric cultures, human migration patterns)
- Religious eschatology (millennialism, apocalyptic prophecies)
- Long-term planning (10,000 Year Clock, deep time thinking)
Millennium Boundaries: The 2000 vs. 2001 Debate
The Great Millennium Debate of 1999-2001 centered on when the 3rd millennium actually began:
Formal reckoning (technically correct):
- 1st millennium CE: 1-1000
- 2nd millennium CE: 1001-2000
- 3rd millennium CE: 2001-3000
Why? Because there was no year 0 in the Gregorian calendar (1 BCE → 1 CE), the first millennium was years 1-1000, making 2001 the true start of the 3rd millennium.
Popular celebration (dominant in practice):
- 1st millennium: "The first thousand years" (1-999, ending at 1000)
- 2nd millennium: "The 1000s" (1000-1999)
- 3rd millennium: "The 2000s onward" (2000-2999)
The Y2K Effect: On January 1, 2000, most of the world celebrated the new millennium despite pedantic arguments for 2001. The psychological significance of "flipping" from 1999 to 2000 overwhelmed technical correctness. Many institutions (including the U.S. Naval Observatory) officially recognized January 1, 2001, as the millennium start, but popular culture had already moved on.
Scientific Notation: Kiloyears (ka/kyr)
In geology, archaeology, and paleoclimatology, millennia are expressed as kiloyears:
- ka or kyr = 1,000 years (kilo-annum or kiloyear)
- Ma or Myr = 1,000,000 years (mega-annum or megayear)
- Ga or Gyr = 1,000,000,000 years (giga-annum or gigayear)
Examples:
- Last Glacial Maximum: 26.5-19 ka (26,500-19,000 years ago)
- Agricultural Revolution: ~12 ka (12,000 years ago)
- End of last ice age: ~11.7 ka (beginning of Holocene)
- Modern humans in Europe: ~45 ka
Note: The Sidereal Day is part of the imperial/US customary system, primarily used in the US, UK, and Canada for everyday measurements. The Millennium belongs to the imperial/US customary system.
History of the Sidereal Day and Millennium
Ancient Observations (2000-300 BCE)
Babylonian astronomy (circa 2000-1500 BCE):
- Babylonian astronomers tracked stellar positions for astrological and calendrical purposes
- Noticed stars rose earlier each night relative to the Sun's position
- Created star catalogs showing this gradual eastward drift
Greek astronomy (circa 600-300 BCE):
- Thales of Miletus (624-546 BCE): Used stellar observations for navigation
- Meton of Athens (432 BCE): Discovered the 19-year Metonic cycle, reconciling lunar months with solar years
- Recognized that stellar year differed from seasonal year
Hipparchus and Precession (150 BCE)
Hipparchus of Nicaea (circa 190-120 BCE), one of history's greatest astronomers:
Discovery: By comparing ancient Babylonian star catalogs with his own observations, Hipparchus discovered precession of the equinoxes—the slow westward drift of the vernal equinox against the stellar background
Sidereal measurements: To detect this subtle effect (1 degree per 72 years), Hipparchus needed precise sidereal positions, implicitly understanding the sidereal day concept
Legacy: His work established the difference between:
- Sidereal year: One orbit relative to stars (365.256363 days)
- Tropical year: One cycle of seasons (365.242199 days)
The ~20-minute difference between these years arises from precession.
Ptolemy's Almagest (150 CE)
Claudius Ptolemy compiled Greek astronomical knowledge in the Almagest, including:
- Star catalogs with sidereal positions
- Mathematical models for predicting stellar rising times
- Understanding that stars complete one full circuit of the sky slightly faster than the Sun
Though Ptolemy's geocentric model was wrong, his sidereal observations were accurate and useful for centuries.
Islamic Golden Age (800-1400 CE)
Islamic astronomers refined sidereal timekeeping:
Al-Battani (850-929 CE):
- Measured the tropical year to high precision
- Created improved star catalogs using sidereal positions
Ulugh Beg (1394-1449 CE):
- Built the Samarkand Observatory with advanced instruments
- Produced star catalogs accurate to ~1 arcminute using sidereal measurements
Copernican Revolution (1543)
Nicolaus Copernicus (De revolutionibus orbium coelestium, 1543):
Heliocentric model: Placing the Sun (not Earth) at the center explained the sidereal-solar day difference:
- Earth rotates on its axis (sidereal day)
- Earth orbits the Sun (creating solar day difference)
- The 4-minute discrepancy results from Earth's ~1° daily orbital motion
This was strong evidence for heliocentrism, though it took decades for acceptance.
Kepler's Laws (1609-1619)
Johannes Kepler formulated laws of planetary motion using sidereal periods:
Third Law: The square of a planet's orbital period is proportional to the cube of its orbit's semi-major axis
Application: Calculating planetary positions required precise sidereal reference frames, not solar time
Rise of Telescopic Astronomy (1600s-1700s)
Galileo Galilei (1609):
- Telescopic observations required tracking celestial objects as they moved across the sky
- Sidereal time became essential for predicting when objects would be visible
Royal Observatory, Greenwich (1675):
- Founded by King Charles II with John Flamsteed as first Astronomer Royal
- Developed accurate sidereal clocks to time stellar transits
- Greenwich Mean Sidereal Time (GMST) became the astronomical standard
Paris Observatory (1667):
- French astronomers developed precision pendulum clocks for sidereal timekeeping
- Cassini family produced detailed planetary observations using sidereal coordinates
Precision Timekeeping (1800s)
19th century: Mechanical sidereal clocks achieved second-level accuracy:
Sidereal clock design: Modified to tick 366.2422/365.2422 times faster than solar clocks (accounting for the extra sidereal day per year)
Observatory operations: Major observatories (Greenwich, Paris, Harvard, Lick, Yerkes) used sidereal clocks as primary timekeeping for scheduling observations
Photography: Long-exposure astrophotography required tracking objects at the sidereal rate to prevent star trailing
IAU Standardization (1900s)
International Astronomical Union (IAU) formalized definitions:
Mean sidereal day: 86,164.0905 seconds (exactly, by definition)
Greenwich Mean Sidereal Time (GMST): Standard sidereal time referenced to Greenwich meridian
Vernal equinox reference: Traditional sidereal time measures Earth's rotation relative to the vernal equinox (intersection of celestial equator and ecliptic)
Modern Era: ICRF (1997-Present)
International Celestial Reference Frame (ICRF):
Problem: The vernal equinox shifts due to precession, making it an imperfect reference
Solution: ICRF uses ~300 distant quasars (billions of light-years away) as fixed reference points
Accuracy: Defines celestial positions to milliarcsecond precision
Atomic time: Sidereal time is now calculated from International Atomic Time (TAI) and Earth orientation parameters measured by Very Long Baseline Interferometry (VLBI)
Modern sidereal clocks: Digital, GPS-synchronized, automatically updated for Earth rotation variations
of the Millennium
Ancient Roots: The Power of 1,000
While ancient civilizations didn't use "millennium" terminology, they recognized the symbolic power of 1,000:
Mesopotamia (c. 3000 BCE):
- Sumerian base-60 counting system sometimes grouped into larger cycles
- Concept of vast cosmic cycles in Babylonian astronomy
- Royal inscriptions proclaiming dynasties lasting "1,000 years"
Ancient Egypt (c. 3000-30 BCE):
- Pharaohs wished to rule for "millions of years" (ḥḥ n rnpwt)
- Concept of vast temporal cycles in creation myths
- No specific millennium framework, but awareness of deep historical time
Ancient Greece and Rome (c. 800 BCE - 476 CE):
- Greek historians like Herodotus tracked events across centuries
- Roman historians (Livy, Tacitus) chronicled ab urbe condita ("from the founding of the city," 753 BCE)
- Latin words "mille" (thousand) existed but weren't combined with "annus" (year) until later
Medieval Christianity: The Birth of "Millennium" (c. 400-1000 CE)
The term "millennium" emerged in Medieval Latin through Christian theology:
Book of Revelation (c. 95 CE):
- Revelation 20:1-6 describes a 1,000-year reign of Christ following the defeat of Satan
- "And I saw an angel come down from heaven... and he laid hold on the dragon... and bound him a thousand years"
- Early Christian theologians debated whether this was literal or symbolic
Augustine of Hippo (c. 400 CE):
- Argued in The City of God that the millennium was allegorical, representing the Church age between Christ's resurrection and Second Coming
- Discouraged literal millennium expectations
- His interpretation became dominant in Western Christianity
Millennial Anxiety of 999-1000 CE:
- As the year 1000 approached, apocalyptic expectations spread across Christian Europe
- Some chroniclers reported increased pilgrimages, property donations to churches, and fears of the Last Judgment
- Historiographical debate: Modern scholars debate how widespread this anxiety truly was (some argue it was exaggerated by later writers)
- The year 1000 passed without apocalypse, disappointing some millennialists
The Second Millennium: Medieval to Modern (1001-2000 CE)
Medieval Period (c. 1000-1500):
- Little emphasis on millennium as a historical unit
- Christian eschatology continued debating millennial prophecy
- Historical consciousness focused on generations, reigns, and centuries
Enlightenment and Secular Millennialism (c. 1700-1900):
- As Anno Domini dating spread, historians began using "1st millennium" and "2nd millennium" as periodization tools
- Secular millennialism emerged: belief in human progress toward utopian futures
- The 2nd millennium saw: Renaissance, Scientific Revolution, Enlightenment, Industrial Revolution, Democratic Revolutions
Late 19th Century Historical Consciousness:
- Historians like Leopold von Ranke systematized historical periodization
- Growing awareness that the year 2000 would mark a millennium transition
- Academic interest in how the approach to 1000 CE shaped medieval culture
The Y2K Phenomenon: Approaching 2000 CE (1990-2001)
Dual Millennium Crisis:
1. Technical Crisis (Y2K Bug):
- Many computer systems used 2-digit year codes (98, 99, 00...)
- Fear that "00" would be interpreted as 1900, causing catastrophic failures in banking, utilities, aviation, nuclear systems
- Estimated $300-600 billion spent globally on Y2K remediation
- Result: Minimal disruptions occurred, leading to debate whether the threat was overhyped or prevention was successful
2. Cultural Phenomenon:
- Unprecedented global synchronized celebration on December 31, 1999
- Millennium summits, concerts, fireworks, time capsules
- Sydney, Australia's midnight fireworks became the first major celebration broadcast worldwide
- Times Square New York: 2 million attendees, 1 billion TV viewers globally
3. Millennial Movements:
- Religious millennialism resurged (predictions of Second Coming, Rapture, apocalypse)
- New Age movements declared "Age of Aquarius" dawning
- Doomsday preppers stockpiled supplies for anticipated societal collapse
- Philosophical reflections on humanity's progress: "Best of times or worst of times?"
The Great Millennium Debate:
- Media, scholars, and pedants argued: Does the new millennium begin January 1, 2000 or 2001?
- Most of the world celebrated 2000, ignoring the "no year zero" technicality
- Arthur C. Clarke (author of 2001: A Space Odyssey) advocated for 2001 as the true start
- Compromise: Some celebrated both years
Contemporary Usage: The 3rd Millennium (2001-Present)
Historical Periodization:
- Historians now routinely use "1st millennium CE," "2nd millennium BCE," etc.
- Increasing awareness of deep historical time beyond recorded history
Geological and Archaeological Timescales:
- Kiloyear (ka) notation standard in scientific literature
- Holocene Calendar proposed: Add 10,000 years to CE dates (2000 CE = 12,000 HE)
- Recognition that human civilization (agriculture, cities, writing) emerged in the last 10-12 millennia
Long-Term Thinking Initiatives:
- Long Now Foundation (founded 1996): Building a 10,000-Year Clock to encourage long-term thinking
- Climate science projections extending to 2100, 2200, even 3000 CE
- Nuclear waste warning systems designed to last 10,000 years
- Concepts like "Cathedral Thinking" (projects spanning centuries/millennia)
Common Uses and Applications: sidereal days vs millennia
Explore the typical applications for both Sidereal Day (imperial/US) and Millennium (imperial/US) to understand their common contexts.
Common Uses for sidereal days
1. Telescope Pointing and Tracking
Professional observatories use sidereal time to point telescopes:
Right Ascension (RA): Celestial equivalent of longitude, measured in hours of sidereal time (0h to 24h)
Local Sidereal Time (LST): The current RA crossing the meridian
Pointing formula: If LST = 18h 30m, objects with RA ≈ 18h 30m are currently at their highest point (zenith)
Tracking rate: Telescope motors rotate at the sidereal rate (1 rotation per 23h 56m 4s) to follow stars across the sky as Earth rotates
Example:
- Vega: RA = 18h 37m
- When LST = 18:37, Vega crosses the meridian (highest in sky)
- Observer can plan observations when object will be optimally placed
2. Astrophotography
Long-exposure astrophotography requires tracking at the sidereal rate:
Problem: Earth's rotation makes stars trail across the image during long exposures
Solution: Equatorial mounts with sidereal drive motors:
- Rotate at exactly 1 revolution per sidereal day
- Keep stars fixed in the camera's field of view
- Enables exposures of minutes to hours without star trailing
Adjustment: Solar rate ≠ sidereal rate; photographers must use sidereal tracking for stars, solar tracking for Sun/Moon
3. Satellite Orbit Planning
Satellite engineers use sidereal time for orbit design:
Sun-synchronous orbits: Satellites that always cross the equator at the same local solar time
- Orbital period is chosen to precess at the solar rate, not sidereal rate
Geosynchronous orbits: Satellites that hover over one point on Earth
- Orbital period = 1 sidereal day (23h 56m 4s)
- NOT 24 hours! Common misconception.
Molniya orbits: High-eccentricity orbits with period = 0.5 sidereal days for optimal high-latitude coverage
4. Very Long Baseline Interferometry (VLBI)
Radio astronomers use VLBI to achieve ultra-high resolution:
Technique: Combine signals from radio telescopes across continents
Timing requirement: Sidereal time must be synchronized to nanosecond precision across all telescopes
Result: VLBI can resolve features 1,000 times smaller than Hubble Space Telescope (angular resolution ~0.0001 arcseconds)
Application: Measures Earth's rotation variations by observing quasars at precise sidereal times
5. Navigation and Geodesy
Sidereal time is used for precise Earth orientation measurements:
Earth Orientation Parameters (EOPs):
- Polar motion (wobble of Earth's axis)
- UT1 (Earth rotation angle, related to Greenwich sidereal time)
- Length of day variations
GPS accuracy: GPS navigation requires knowing Earth's orientation to ~1 meter precision, necessitating sidereal time corrections
Tidal forces: Moon and Sun create tidal bulges that affect Earth's rotation, causing sidereal day variations at the millisecond level
6. Space Navigation
Spacecraft use sidereal reference frames:
Star trackers: Autonomous spacecraft orientation using star patterns
- Compare observed stellar positions with catalog
- Catalog uses sidereal coordinates (RA/Dec)
Interplanetary navigation: Voyager, New Horizons, and other deep-space probes navigate using sidereal reference frames (ICRF)
Mars rovers: Use Martian sidereal time ("sols") for mission planning
- 1 Mars sol = 24h 39m 35s (Mars rotates slower than Earth)
7. Amateur Astronomy
Amateur astronomers use sidereal time for planning:
Planispheres: Rotating star charts that show which constellations are visible at any given sidereal time and date
Computerized telescopes: GoTo mounts require accurate sidereal time for automatic star finding
Observation logs: Record sidereal time of observations for repeatability
When to Use millennia
of the Millennium in Modern Contexts
1. Historical Education and Academic Research
Millennia provide the broadest standard framework for teaching and analyzing human history:
- World History Courses: "The 1st millennium saw the rise of major world religions..."
- Archaeological Reports: "Settlement patterns in the region from 5-3 ka..."
- Historical Comparisons: "How did governance systems evolve over the 2nd millennium?"
- Civilizational Studies: Tracing the rise, flourishing, and decline of civilizations across millennia
Academic Journals regularly use millennium-scale analysis in titles:
- "Climate Change Across the Last Three Millennia"
- "Urbanization Patterns in the 1st Millennium BCE"
- "Linguistic Evolution Over Two Millennia"
2. Geological and Climate Science
Geologists and climate scientists routinely work with millennium timescales:
- Holocene Epoch: Divided into three ages defined by thousand-year boundaries
- Glacial Cycles: Ice ages and interglacials measured in millennia
- Sea Level Change: "Sea levels rose 120 meters over 10 millennia as ice sheets melted"
- Sedimentation Rates: Geological layers deposited over millennia
Kiloyear (ka) Notation:
- Standard in scientific papers: "The 8.2 ka event disrupted North Atlantic circulation"
- Allows precise dating: "Pottery shards dated to 7.3 ± 0.2 ka"
3. Cultural Heritage and Collective Identity
Millennia shape how cultures understand their history and continuity:
- National Narratives: "China has continuous civilization spanning 5 millennia"
- Indigenous Connections: Native American cultures documenting 10,000+ year connections to land
- Linguistic Heritage: "Greek language has been spoken continuously for 3+ millennia"
- Religious Traditions: Judaism, Hinduism, Buddhism claiming multi-millennial traditions
Millennium Celebrations:
- Iceland celebrated 1,000 years of parliament (Althing) in 1930
- Vatican celebrated 2,000 years of Christianity in 2000-2001
- China emphasizes "5,000 years of civilization" in cultural diplomacy
4. Archaeological and Anthropological Dating
Archaeologists organize prehistoric and ancient history by millennia:
BCE/CE Millennia:
- 3rd millennium BCE (3000-2001 BCE): Rise of early civilizations (Egypt, Mesopotamia, Indus Valley)
- 2nd millennium BCE (2000-1001 BCE): Bronze Age, Mycenaean Greece, Shang Dynasty China
- 1st millennium BCE (1000-1 BCE): Iron Age, Classical Greece, Roman Republic, Axial Age philosophers
Before Present (BP) Notation:
- Often used with radiocarbon dating
- "Before Present" = before 1950 CE
- "The site was occupied from 12,000-10,000 BP" (= ~10,000-8,000 BCE)
5. Long-Term Forecasting and Futures Studies
While rare, some fields project millennia into the future:
Climate Modeling:
- Some studies project global temperature and sea level through 3000 CE
- "Irreversible ice sheet collapse may occur over the next 2 millennia"
Orbital Mechanics:
- Solar system dynamics calculated millennia ahead
- Eclipse predictions for thousands of years
- Planetary positions for ancient astronomical events ("Did Plato see a specific comet in 347 BCE?")
Deep Geological Time:
- Plate tectonics: "North America and Europe will close the Atlantic in ~200 million years"
- Stellar evolution: "The Sun will enter red giant phase in ~5 billion years"
6. Philosophy and Long-Term Ethics
Philosophers and ethicists invoke millennium scales when discussing humanity's long-term responsibilities:
Longtermism Movement:
- Focus on ensuring humanity's survival and flourishing over millennia
- Questions like: "What obligations do we have to people living 10,000 years from now?"
- Influential in effective altruism and existential risk communities
Environmental Ethics:
- "We must preserve ecosystems for millennia to come"
- Recognition that extinction is permanent across all future millennia
- Concept of "intergenerational justice" across hundreds of generations
Technological Legacy:
- "How should we design nuclear waste containment for 10 millennia?"
- Digital preservation: "Will our digital records last even one millennium?"
7. Popular Culture and Symbolic Milestones
Millennia appear in popular culture as symbols of vast time:
Fiction and Film:
- 2001: A Space Odyssey (Arthur C. Clarke): Millennium as threshold to new era
- Foundation series (Isaac Asimov): Predicting galactic history across millennia
- Dune (Frank Herbert): "In the year 10,191..." (10 millennia hence)
Music and Art:
- Symphony performances at millennium celebrations
- Time capsules buried for opening in 1,000 years
- Millennium monuments and sculptures
Everyday Language:
- "Turn of the millennium" as shorthand for late 1990s/early 2000s
- "Millennial generation" (born ~1981-1996, coming of age around 2000)
- "Millennium Falcon" (Star Wars) - name evokes vast time/space
Additional Unit Information
About Sidereal Day (sidereal day)
How long is a sidereal day in standard time?
Answer: 23 hours, 56 minutes, 4.091 seconds (or 86,164.091 seconds)
This is the time for Earth to rotate exactly 360 degrees relative to distant stars.
Precise value: 1 mean sidereal day = 86,164.0905 seconds
Comparison to solar day:
- Solar day: 86,400 seconds (24 hours)
- Sidereal day: 86,164.091 seconds
- Difference: ~236 seconds shorter (~3 min 56 sec)
Important: This is the mean sidereal day. Earth's actual rotation rate varies slightly (milliseconds) due to tidal forces, atmospheric winds, earthquakes, and core-mantle coupling.
Why is a sidereal day shorter than a solar day?
Answer: Because Earth orbits the Sun while rotating—requiring extra rotation to bring the Sun back to the same sky position
Step-by-step explanation:
-
Starting point: The Sun is directly overhead (noon)
-
One sidereal day later (23h 56m 4s): Earth has rotated exactly 360° relative to stars
- But Earth has also moved ~1° along its orbit around the Sun
- The Sun now appears slightly east of overhead
-
Extra rotation needed: Earth must rotate an additional ~1° (taking ~4 minutes) to bring the Sun back overhead
-
Result: Solar day (noon to noon) = sidereal day + ~4 minutes = 24 hours
Orbital motion causes the difference: Earth moves ~1°/day along its 365-day orbit (360°/365 ≈ 0.986°/day). This ~1° requires ~4 minutes of extra rotation (24 hours / 360° ≈ 4 min/degree).
Consequence: Stars rise ~4 minutes earlier each night relative to solar time, shifting ~2 hours per month, completing a full cycle annually.
Is sidereal time the same everywhere on Earth?
Answer: No—Local Sidereal Time (LST) depends on longitude, just like solar time zones
Key concepts:
Local Sidereal Time (LST): The Right Ascension (RA) currently crossing your local meridian
- Different at every longitude
- Changes by 4 minutes for every 1° of longitude
Greenwich Mean Sidereal Time (GMST): Sidereal time at 0° longitude (Greenwich meridian)
- Global reference point, like GMT/UTC for solar time
Conversion: LST = GMST ± longitude offset
- Positive (add) for east longitudes
- Negative (subtract) for west longitudes
Example:
- GMST = 12:00
- New York (74°W): LST = 12:00 - (74°/15) = 07:04
- Tokyo (139.75°E): LST = 12:00 + (139.75°/15) = 21:19
Duration is universal: A sidereal day (23h 56m 4s) is the same length everywhere—only the current sidereal time differs by location.
Do geosynchronous satellites orbit every 24 hours or 23h 56m?
Answer: 23h 56m 4s (one sidereal day)—NOT 24 hours!
This is one of the most common misconceptions about satellites.
The physics: For a satellite to remain above the same point on Earth's surface, it must orbit at Earth's rotational rate relative to the stars, not relative to the Sun.
Why sidereal?
- Earth rotates 360° in one sidereal day (23h 56m 4s)
- Satellite must complete 360° orbit in the same time
- This keeps satellite and ground point aligned relative to the stellar background
If orbit were 24 hours: The satellite would complete one orbit in one solar day, but Earth would have rotated 360° + ~1° (relative to stars) during that time. The satellite would drift ~1° westward per day, completing a full circuit westward in one year!
Geostationary orbit specifics:
- Altitude: 35,786 km above equator
- Period: 23h 56m 4.091s (1 sidereal day)
- Velocity: 3.075 km/s
Common examples: Communications satellites, weather satellites (GOES, Meteosat)
How many sidereal days are in a year?
Answer: Approximately 366.25 sidereal days—one MORE than the number of solar days!
Precise values:
- Tropical year (season to season): 365.242199 mean solar days
- Sidereal year (star to star): 365.256363 mean solar days
- Sidereal days in tropical year: 366.242199 sidereal days
One extra day: There is exactly one more complete rotation relative to stars than we experience sunrises.
Why?
- Earth makes 366.25 complete 360° rotations relative to stars per year
- But we experience only 365.25 sunrises because we orbit the Sun
- One rotation is "used up" by Earth's orbit around the Sun
Thought experiment: Stand on a rotating platform while walking around a lamp. If you walk one complete circle around the lamp (1 orbit), you'll have spun around 2 complete times relative to the room walls (2 rotations): 1 from walking the circle + 1 from the platform spinning.
Can I use a regular clock to tell sidereal time?
Answer: Not directly—sidereal clocks run about 4 minutes faster per day than solar clocks
Clock rate difference:
- Solar clock: Completes 24 hours in 1 solar day (86,400 seconds)
- Sidereal clock: Completes 24 sidereal hours in 1 sidereal day (86,164.091 seconds)
- Rate ratio: 1.00273791 (sidereal clock ticks ~0.27% faster)
Practical result: After one solar day:
- Solar clock reads: 24:00
- Sidereal clock reads: 24:03:56 (3 min 56 sec ahead)
Modern solutions:
- Sidereal clock apps: Smartphone apps calculate LST from GPS location and atomic time
- Planetarium software: Stellarium, SkySafari show current LST
- Observatory systems: Automated telescopes use GPS-synchronized sidereal clocks
Historical: Mechanical sidereal clocks used gear ratios of 366.2422/365.2422 to run at the correct rate
You can calculate: LST from solar time using formulas, but it's complex (requires Julian Date, orbital mechanics)
Why do astronomers use sidereal time instead of solar time?
Answer: Because celestial objects return to the same position every sidereal day, not solar day
Astronomical reason:
Stars and galaxies are so distant they appear "fixed" in the sky:
- A star at RA = 18h 30m crosses the meridian at LST = 18:30 every sidereal day
- Predictable, repeatable observations
If using solar time: Stars would cross the meridian ~4 minutes earlier each night, requiring daily recalculation of observation windows
Practical advantages:
1. Simple telescope pointing:
- Object's RA directly tells you when it's overhead (LST = RA)
- No date-dependent calculations needed
2. Repeatable observations:
- "Observe target at LST = 22:00" means the same sky position regardless of date
3. Right Ascension coordinate system:
- Celestial longitude measured in hours/minutes of sidereal time (0h to 24h)
- Aligns naturally with Earth's rotation
4. Tracking rate:
- Telescopes track at sidereal rate (1 revolution per 23h 56m 4s)
- Keeps stars fixed in the field of view
Historical: Before computers, sidereal time made astronomical calculations much simpler
What is the difference between a sidereal day and a sidereal year?
Answer: A sidereal day measures Earth's rotation; a sidereal year measures Earth's orbit
Sidereal Day:
- Definition: Time for Earth to rotate 360° on its axis relative to stars
- Duration: 23h 56m 4.091s (86,164.091 seconds)
- Reference: Distant "fixed" stars
- Use: Telescope tracking, astronomy observations
Sidereal Year:
- Definition: Time for Earth to orbit 360° around the Sun relative to stars
- Duration: 365.256363 days (365d 6h 9m 9s)
- Reference: Position relative to distant stars (not seasons)
- Use: Orbital mechanics, planetary astronomy
Key distinction:
- Day = rotation (Earth spinning)
- Year = revolution (Earth orbiting)
Tropical vs. Sidereal Year:
- Tropical year: 365.242199 days (season to season, used for calendars)
- Sidereal year: 365.256363 days (star to star)
- Difference: ~20 minutes, caused by precession of Earth's axis
The 20-minute precession effect: Earth's axis wobbles with a 26,000-year period, causing the vernal equinox to shift ~50 arcseconds/year westward against the stellar background. This makes the tropical year (equinox to equinox) slightly shorter than the sidereal year (star to star).
Does the Moon have a sidereal day?
Answer: Yes—the Moon's sidereal day is 27.322 Earth days, but it's tidally locked to Earth
Moon's sidereal rotation: Time for Moon to rotate 360° relative to stars = 27.322 days
Tidal locking: The Moon's rotation period equals its orbital period around Earth (both 27.322 days)
Consequence: The same face of the Moon always points toward Earth
- We only see ~59% of Moon's surface from Earth (libration allows slight wobbling)
- The "far side" never faces Earth
Moon's "solar day" (lunar day):
- Time from sunrise to sunrise on Moon's surface: 29.531 Earth days
- Different from Moon's sidereal day (27.322 days) for the same reason Earth's solar day differs from sidereal day
- Moon orbits Earth while rotating, requiring extra rotation to bring the Sun back to the same position
Lunar missions: Apollo missions and rovers used "lunar days" for mission planning—each day-night cycle lasts ~29.5 Earth days (2 weeks daylight, 2 weeks night)
How is sidereal time measured today?
Answer: Using atomic clocks, GPS, and Very Long Baseline Interferometry (VLBI) observations of distant quasars
Modern measurement system:
1. International Atomic Time (TAI):
- Network of ~450 atomic clocks worldwide
- Defines the second with nanosecond precision
- Provides base timescale
2. UT1 (Universal Time):
- Earth's rotation angle (actual rotation measured continuously)
- Monitored by VLBI observations of quasars
3. VLBI technique:
- Radio telescopes across continents simultaneously observe distant quasars
- Time differences reveal Earth's exact orientation
- Accuracy: ~0.1 milliseconds (0.005 arcseconds rotation)
4. ICRF (International Celestial Reference Frame):
- Defines "fixed" stellar background using ~300 quasars billions of light-years away
- Replaces older vernal equinox reference (which shifts due to precession)
5. GPS satellites:
- Amateur astronomers and observatories use GPS for accurate time and location
- Software calculates LST from UTC, GPS coordinates, and Earth orientation parameters
Calculation chain:
- Atomic clocks provide UTC
- Earth orientation parameters (EOP) give UT1
- Sidereal time formulas convert UT1 → GMST
- Longitude correction gives LST
Accuracy: Modern systems know Earth's orientation to ~1 centimeter (as a position on Earth's surface), requiring sidereal time precision of ~0.001 seconds
Why so complex? Earth's rotation is not uniform:
- Tidal forces (Moon/Sun) slow rotation by ~2.3 ms/century
- Atmospheric winds cause daily variations (milliseconds)
- Earthquakes can shift rotation by microseconds
- Core-mantle coupling affects long-term drift
Continuous monitoring ensures astronomical observations remain accurate.
Will sidereal time ever be replaced by something else?
Answer: Unlikely—it's fundamental to astronomy, tied directly to Earth's rotation and stellar positions
Why sidereal time persists:
1. Physical basis: Directly tied to Earth's rotation relative to the universe
- Not an arbitrary human convention like time zones
- Essential for understanding celestial mechanics
2. Coordinate system: Right Ascension (celestial longitude) is measured in sidereal hours
- All star catalogs, telescope systems, and astronomical databases use RA/Dec
- Replacing it would require re-cataloging billions of objects
3. Telescope tracking: All telescope mounts track at the sidereal rate
- Mechanically and electronically built into equipment
- Solar tracking is used only for Sun/Moon
4. International standards: IAU, observatories, space agencies globally use sidereal time
- Standardized formulas and software
5. No alternative needed: Sidereal time does its job perfectly for astronomy
Evolution, not replacement:
- Old reference: Vernal equinox (shifts due to precession)
- New reference: ICRF quasars (effectively fixed)
- Future: Increasingly precise atomic timescales and Earth rotation monitoring
Non-astronomical contexts: Civil society will continue using solar time (UTC) for daily life—there's no need for most people to know sidereal time
Conclusion: Sidereal time is here to stay as long as humans do astronomy from Earth. Even space-based observatories use sidereal coordinate systems for consistency with ground observations.
About Millennium (ka)
1. Why is the millennium important for understanding human history?
The millennium represents the longest standard calendar unit, making it ideal for analyzing civilizational-scale transformations that unfold across 40-50 human generations. Historical changes like the rise of religions (Christianity and Islam spreading across the 1st millennium), technological revolutions (printing press to internet across the 2nd millennium), and political systems (feudalism to democracy) become visible at millennium scale. Millennia help historians avoid both excessive granularity (year-by-year chronicles) and excessive abstraction (multi-million-year geological eras), providing the "Goldilocks" timescale for understanding how human societies evolve while remaining comprehensible to individual humans whose lifetimes span only 1/12th of a millennium.
2. How did the Y2K millennium celebrations differ globally?
The Year 2000 millennium celebration was history's first truly global synchronized event, with time zone-staggered festivities broadcast worldwide. Australia and New Zealand celebrated first (Sydney Harbor's fireworks watched by 1+ billion people), followed by Asia (Hong Kong, Tokyo), Europe (London, Paris, Rome), and finally the Americas (Times Square's iconic ball drop with 2 million attendees). Cultural differences shaped celebrations: Western nations emphasized technological achievement and future optimism; some Islamic nations downplayed CE calendar significance; China balanced official celebrations with awareness that their lunar calendar didn't align; Indigenous groups in Americas reflected on 500 years since European contact. The International Date Line in Pacific Ocean meant Kiribati's Caroline Island (renamed Millennium Island) technically celebrated first. Global media coverage created unprecedented collective experience of humanity marking shared temporal milestone.
3. What was the millennial anxiety of 999-1000 CE really like?
The popular image of medieval Europeans panicking about the year 1000 is somewhat exaggerated, though real anxiety existed. Contemporary chronicles are sparse and contradictory—some report increased pilgrimages, property donations to churches, and apocalyptic preaching, while others mention nothing unusual. Modern historians debate the extent: Georges Duby argued anxiety was widespread; Richard Landes (1999) claimed substantial "apocalyptic stirrings"; Sylvain Gouguenheim found minimal contemporary evidence. Key factors: 1) Anno Domini dating wasn't universal yet—many regions used different calendars; 2) Medieval record-keeping was limited; 3) Apocalyptic thinking was continuous in medieval Christianity, not uniquely focused on 1000; 4) Some anxiety may have been retrospectively attributed by 12th-century chroniclers. Consensus: Some educated clerics and nobles were aware of the millennial anniversary and discussed its apocalyptic significance, but mass panic among illiterate peasants (who likely didn't know the year number) was limited. The 1999-2000 millennium frenzy may have projected modern concerns backward.
4. Why do geologists use "ka" instead of "millennia"?
The kiloyear (ka) notation offers several advantages for scientific dating: 1) Precision: "12.5 ka" is clearer than "12 and a half millennia ago"; 2) Consistency with SI units: Kilo- (1,000) is standard metric prefix, creating consistency with kilograms, kilometers, etc.; 3) Avoids CE/BCE confusion: "ka" means years before present (defined as 1950 CE), eliminating calendar system debates; 4) Scalability: Easily extends to Ma (mega-annum, million years) and Ga (giga-annum, billion years) for older geological periods; 5) International standard: Works across languages without translation; 6) Radiocarbon convention: Integrated with C-14 dating which reports ages in "years BP" or "ka BP". For example, saying "The ice age ended 11.7 ka" is more scientifically precise than "The ice age ended about 12 millennia ago." The notation also avoids the awkward phrasing of "11.7 thousand years ago."
5. Can you actually predict events millennia in advance?
Prediction accuracy depends on the type of phenomenon: Highly predictable (orbital mechanics): Solar system dynamics can be calculated millennia ahead—we know eclipse dates for 3000 CE with high precision, planetary positions, comet returns (Halley's Comet will return in 2061, 4223, 6385...). Moderately predictable (geological processes): Plate tectonics moves continents ~1-10 cm/year, allowing rough predictions for millennia (Atlantic Ocean widening, Africa-Europe collision). Poorly predictable (climate): Models project ~100-200 years with declining confidence; millennium-scale projections are scenario-based ("if CO₂ levels remain X..."). Essentially unpredictable (human society): In 1025 CE, no one could predict Internet, democracy, or nuclear weapons by 2025 CE. Technological and social change follows non-linear, chaotic patterns. Lesson: Physical laws enable millennium-scale astronomical/geological predictions, but complex adaptive systems (climate, ecosystems, civilizations) become unpredictable beyond centuries. However, boundary conditions can be identified: "Earth will remain habitable for millennia, but not hundreds of millions of years."
6. How many ancestors do you have going back one millennium?
The mathematical answer is exponential: 2^40 ≈ 1.1 trillion ancestors (assuming 40 generations × 2 parents per generation). But Earth's population 1,000 years ago was only ~300-400 million! This paradox is resolved by pedigree collapse: Your family tree isn't a clean binary tree—it's a tangled network where the same ancestors appear multiple times through different lineages. Examples: If your parents are 4th cousins (common in small communities), your great-great-great-grandparents appear twice in your tree. Population genetics studies show that going back ~2,000-3,000 years: 1) You share at least one common ancestor with every person of your ancestry group (Europeans, East Asians, etc.); 2) Going back ~3,400 years, you likely share ancestors with all humans alive then who left descendants. So one millennium back (~1025 CE), your ancestors include many of the same people repeated thousands of times through different paths. You likely descend from Charlemagne (747-814 CE) through hundreds of different lineages simultaneously.
7. What's the longest continuously maintained human institution spanning millennia?
The Catholic Church claims the longest continuous institutional existence at ~2,000 years (since ~33 CE), with traceable papal succession and institutional continuity despite doctrinal/political changes. Chinese imperial examination system lasted ~1,300 years (605-1905 CE) with remarkable consistency. University of Al Qarawiyyin (Fez, Morocco) has operated since 859 CE (~1,165 years), potentially the oldest continuously operating university, though institutional continuity is debated. Japanese imperial dynasty claims ~2,600 years (mythological early dates are disputed; documented from ~500 CE = ~1,500 years). Buddhist monastic lineages have maintained unbroken transmission of teachings for ~2,500 years. Key insight: "Continuous institution" is fuzzy—most organizations evolve dramatically over millennia (Catholic Church of 325 CE vs. 2025 CE differ profoundly in doctrine, structure, language). Perhaps better framing: Which institutional identity has been claimed continuously longest? Churches, dynasties, and universities maintain identity through evolving practices, like the Ship of Theseus paradox applied to organizations.
8. Could human civilization collapse within this millennium?
Existential risk researchers estimate non-trivial probability of civilizational collapse or extinction this millennium from various threats: Nuclear war could kill billions and cause nuclear winter disrupting agriculture for decades (not extinction, but collapse). Climate change in worst scenarios could render large regions uninhabitable, triggering resource wars, mass migration, agricultural failure—potentially civilizational stress but unlikely complete extinction. Engineered pandemics (bioterrorism or accidental release) could potentially kill large percentages of global population. Artificial intelligence risk: If advanced AI becomes unaligned with human values, could pose existential threat (speculative, debated). Asteroid impact: ~1/100,000 chance of civilization-threatening impact per century. Supervolcanic eruption: Low probability but high impact. Estimates vary widely: Some researchers (Nick Bostrom, Toby Ord) estimate 10-20% existential risk this century; others consider this exaggerated. Reasons for cautious optimism: 1) Humans survived past bottlenecks (Toba supervolcano ~74 ka); 2) Technological resilience increasing; 3) Growing awareness of risks. Key point: Civilization likely faces serious disruptions this millennium, but complete extinction is less probable than transformation.
9. Why do some cultures count millennia differently than CE dating?
CE (Common Era) dating is just one of many calendar systems: Islamic Calendar (AH - Anno Hegirae): Year 1 AH = 622 CE (Muhammad's migration to Medina). As of 2025 CE = ~1446 AH. Based on lunar years (~354 days), so AH years accumulate faster. Jewish Calendar (AM - Anno Mundi): Counts from supposed creation date. 2025 CE = ~5785 AM. Hindu Calendars: Multiple systems, some counting from Kali Yuga beginning (~3102 BCE), others from different epochs. Buddhist Calendars: Year 1 = Buddha's death (~544 BCE in some traditions, ~486 BCE in others). 2025 CE = ~2569 BE. Chinese Calendar: Cycles of 60 years, sometimes counted from legendary Yellow Emperor (~2697 BCE). Persian Calendar: Counts from Muhammad's Hijra like Islamic calendar but uses solar years. Practical usage: Global commerce, diplomacy, and science use CE dating for interoperability, but cultural/religious communities maintain traditional calendars for internal use. Millennium celebrations were primarily CE-based because globalization and European colonial history made Gregorian calendar dominant.
10. What would you need to preserve for 1,000 years?
Preserving information/artifacts for a millennium faces technical, environmental, and social challenges: Physical media decay: Paper acidifies (300-500 years max); digital storage degrades (magnetic media: 10-30 years; optical discs: 50-100 years; flash drives: 10-30 years). Best options: 1) Stone tablets (Rosetta Stone survived 2,200 years); 2) M-DISC optical media (claimed 1,000-year lifespan, though unproven); 3) 5D optical data storage (quartz glass, experimentally stable for millions of years); 4) Analog microfilm (silver halide film: 500+ years in controlled conditions). Environmental control: Temperature/humidity stability, protection from water/fire/pests. Language changes: English of 1025 CE (Old English) is unintelligible to modern readers; English of 3025 CE will likely be equally foreign. Solution: Include translation aids, pictographic keys (like Voyager Golden Record). Social continuity: Institution must maintain preservation mission across 40-50 generations. Examples: Vatican Archives, Long Now Foundation's 10,000-Year Clock, Svalbard Global Seed Vault (designed for centuries). Best strategy: Redundancy (many copies in different locations) + active curation (periodic refreshing to new media) + institutional commitment (religious orders, universities, government archives).
11. How does the concept of a millennium appear in non-Western cultures?
Millennium as specific 1,000-year unit is largely a Western/Christian concept, but other cultures recognize vast time: Chinese civilization: Emphasizes 5,000-year continuity (五千年文明), though not broken into formal millennia. Dynastic histories tracked centuries, not millennia. Indian philosophy: Works with vast cosmic cycles—Yugas (ages) lasting hundreds of thousands of years; Kalpas (eons) lasting billions of years. A millennium is a tiny unit in this cosmology. Indigenous Australian Dreamtime: Conceives time cyclically, not linearly, with mythological events "outside time" rather than X years ago. Oral traditions preserve stories potentially spanning 10,000+ years. Mesoamerican Long Count Calendar: Mayan calendar tracked very long periods (Baktun = 394 years; 13 Baktuns = 5,125 years). The calendar "reset" in 2012 CE (end of 13th Baktun), causing apocalyptic speculation. Islamic scholarship: Uses Hijri calendar but also engages with millennium-scale historical analysis, especially when interfacing with Western academia. Modern globalization: CE dating and millennium framework have become lingua franca of international scholarship, but local cultural frameworks persist. The Y2K millennium was largely a Western/Christian cultural moment, though celebrated globally due to economic/technological integration.
12. What will the world be like one millennium from now (3025 CE)?
Honest answer: Unknowable. In 1025 CE, no one could have imagined 2025 CE's technology, political systems, or culture. Boundary conditions we can establish: 1) Physics will be the same: Gravity, electromagnetism, thermodynamics unchanged. 2) Earth will remain habitable: Sun's luminosity increases only ~10% per billion years; no solar threat for next million years. 3) Humans (or descendants) will likely exist: Evolutionary timescales are millions of years; biological humans won't evolve significantly in 1,000 years, but technology could radically transform human biology (genetic engineering, cybernetic enhancement, mind uploading?). Scenario thinking: Pessimistic: Civilizational collapse from climate change, nuclear war, pandemics → neo-medieval conditions, population collapse, technological loss. Moderate: Slow progress, challenges managed, recognizable but advanced societies. Optimistic: Post-scarcity economies, radical life extension, space colonization, AI-assisted problem-solving, disease elimination. Wild cards: Artificial general intelligence, nanotechnology, quantum computing, fusion energy, asteroid mining, alien contact (very low probability). Most likely: A mix—some regions thriving with advanced technology, others struggling with resource scarcity, climate impacts, and political instability. Lesson from past millennia: Change accelerates. More change occurred 1500-2000 CE than 500-1000 CE. If acceleration continues, 2025-3025 CE could see incomprehensibly greater transformation than 1025-2025 CE saw.
Conversion Table: Sidereal Day to Millennium
| Sidereal Day (sidereal day) | Millennium (ka) |
|---|---|
| 0.5 | 0 |
| 1 | 0 |
| 1.5 | 0 |
| 2 | 0 |
| 5 | 0 |
| 10 | 0 |
| 25 | 0 |
| 50 | 0 |
| 100 | 0 |
| 250 | 0.001 |
| 500 | 0.001 |
| 1,000 | 0.003 |
People Also Ask
How do I convert Sidereal Day to Millennium?
To convert Sidereal Day to Millennium, enter the value in Sidereal Day in the calculator above. The conversion will happen automatically. Use our free online converter for instant and accurate results. You can also visit our time converter page to convert between other units in this category.
Learn more →What is the conversion factor from Sidereal Day to Millennium?
The conversion factor depends on the specific relationship between Sidereal Day and Millennium. You can find the exact conversion formula and factor on this page. Our calculator handles all calculations automatically. See the conversion table above for common values.
Can I convert Millennium back to Sidereal Day?
Yes! You can easily convert Millennium back to Sidereal Day by using the swap button (⇌) in the calculator above, or by visiting our Millennium to Sidereal Day converter page. You can also explore other time conversions on our category page.
Learn more →What are common uses for Sidereal Day and Millennium?
Sidereal Day and Millennium are both standard units used in time measurements. They are commonly used in various applications including engineering, construction, cooking, and scientific research. Browse our time converter for more conversion options.
For more time conversion questions, visit our FAQ page or explore our conversion guides.
Helpful Conversion Guides
Learn more about unit conversion with our comprehensive guides:
All Time Conversions
Other Time Units and Conversions
Explore other time units and their conversion options:
- Second (s) • Sidereal Day to Second
- Minute (min) • Sidereal Day to Minute
- Hour (h) • Sidereal Day to Hour
- Day (d) • Sidereal Day to Day
- Week (wk) • Sidereal Day to Week
- Month (mo) • Sidereal Day to Month
- Year (yr) • Sidereal Day to Year
- Millisecond (ms) • Sidereal Day to Millisecond
- Microsecond (μs) • Sidereal Day to Microsecond
- Nanosecond (ns) • Sidereal Day to Nanosecond
Verified Against Authority Standards
All conversion formulas have been verified against international standards and authoritative sources to ensure maximum accuracy and reliability.
National Institute of Standards and Technology — Official time standards and definitions
Bureau International des Poids et Mesures — Definition of the SI base unit for time
Last verified: December 3, 2025