Ton (UK) to Slug Converter
Convert long tons to slugs with our free online weight converter.
Quick Answer
1 Ton (UK) = 69.621342 slugs
Formula: Ton (UK) × conversion factor = Slug
Use the calculator below for instant, accurate conversions.
Our Accuracy Guarantee
All conversion formulas on UnitsConverter.io have been verified against NIST (National Institute of Standards and Technology) guidelines and international SI standards. Our calculations are accurate to 10 decimal places for standard conversions and use arbitrary precision arithmetic for astronomical units.
Ton (UK) to Slug Calculator
How to Use the Ton (UK) to Slug Calculator:
- Enter the value you want to convert in the 'From' field (Ton (UK)).
- The converted value in Slug will appear automatically in the 'To' field.
- Use the dropdown menus to select different units within the Weight category.
- Click the swap button (⇌) to reverse the conversion direction.
How to Convert Ton (UK) to Slug: Step-by-Step Guide
Converting Ton (UK) to Slug involves multiplying the value by a specific conversion factor, as shown in the formula below.
Formula:
1 Ton (UK) = 69.6213 slugsExample Calculation:
Convert 5 long tons: 5 × 69.6213 = 348.107 slugs
Disclaimer: For Reference Only
These conversion results are provided for informational purposes only. While we strive for accuracy, we make no guarantees regarding the precision of these results, especially for conversions involving extremely large or small numbers which may be subject to the inherent limitations of standard computer floating-point arithmetic.
Not for professional use. Results should be verified before use in any critical application. View our Terms of Service for more information.
Need to convert to other weight units?
View all Weight conversions →What is a Ton (UK) and a Slug?
The long ton (also called imperial ton or UK ton) is a unit of mass in the British Imperial system, officially defined as:
1 long ton = 2,240 pounds (lb) = 1,016.0469088 kilograms (kg)
Historical Definition
The long ton is based on the Imperial system's hundredweight (cwt):
1 long ton = 20 hundredweight (cwt)
- 1 hundredweight (Imperial) = 112 pounds
- 20 × 112 lb = 2,240 pounds
This contrasts with the US system:
- US hundredweight = 100 pounds
- US short ton = 20 US hundredweight = 2,000 pounds
The Three "Tons" Compared
| Ton Type | Weight in Pounds | Weight in Kilograms | Where Used | |----------|------------------|---------------------|------------| | Long Ton (UK/Imperial) | 2,240 lb | 1,016.047 kg | UK, Commonwealth (historic), naval displacement | | Short Ton (US) | 2,000 lb | 907.185 kg | United States, North America | | Metric Ton/Tonne | 2,204.62 lb | 1,000 kg (exactly) | International standard (SI-compatible) |
Difference Summary:
- Long ton vs. short ton: 240 lbs (10.9% difference)
- Long ton vs. metric tonne: ~16 kg (1.6% difference)
- Short ton vs. metric tonne: ~93 kg (10.2% difference)
Why "Long" Ton?
The term "long ton" emerged in the early 20th century to distinguish the British imperial ton (2,240 lbs) from the American "short ton" (2,000 lbs). Before this, "ton" simply meant the local standard:
- In Britain and the Empire: ton = 2,240 lbs (now called "long ton")
- In the United States: ton = 2,000 lbs (now called "short ton")
International trade requiring clarity led to the qualifying adjectives "long" and "short."
What Is a Slug?
The slug (symbol: sl or slug) is a unit of mass in the Foot-Pound-Second (FPS) system of imperial units. It is defined through Newton's second law of motion (F = ma):
1 slug = 1 lbf / (1 ft/s²)
In words: one slug is the mass that accelerates at one foot per second squared when a force of one pound-force is applied to it.
Exact Value
1 slug = 32.17404855... pounds-mass (lbm) ≈ 32.174 lbm
1 slug = 14.593902937206... kilograms ≈ 14.5939 kg
These values derive from the standard acceleration due to gravity: g = 32.174 ft/s² = 9.80665 m/s².
The Pound Confusion
The imperial system has a fundamental ambiguity: the word "pound" means two different things:
Pound-mass (lbm):
- A unit of mass (quantity of matter)
- An object has the same pound-mass everywhere in the universe
- Symbol: lbm
Pound-force (lbf):
- A unit of force (weight)
- The force exerted by one pound-mass under standard Earth gravity
- Symbol: lbf
- 1 lbf = 1 lbm × 32.174 ft/s² (weight = mass × gravity)
This creates confusion because in everyday language, "pound" can mean either, depending on context. The slug eliminates this ambiguity by serving as an unambiguous mass unit compatible with pound-force.
Why the Slug Matters: Making F = ma Work
Newton's second law: F = ma (Force = mass × acceleration)
Problem with pounds-mass and pounds-force: If you use lbm for mass and lbf for force, Newton's law becomes: F = ma / g_c
where g_c = 32.174 lbm·ft/(lbf·s²) is a dimensional conversion constant—ugly and error-prone!
Solution with slugs: Using slugs for mass and lbf for force, Newton's law works cleanly: F = ma (no extra constants needed!)
Example:
- Force: 10 lbf
- Acceleration: 5 ft/s²
- Mass: F/a = 10 lbf / 5 ft/s² = 2 slugs
- (Or in lbm: mass = 2 slugs × 32.174 = 64.348 lbm)
FPS System
The slug is part of the Foot-Pound-Second (FPS) system, also called the British Gravitational System or English Engineering System:
- Length: foot (ft)
- Force: pound-force (lbf)
- Time: second (s)
- Mass: slug (sl)
- Acceleration: feet per second squared (ft/s²)
This contrasts with the SI system (meter, kilogram, second, newton) and the pound-mass system (foot, pound-mass, second, poundal).
Note: The Ton (UK) is part of the imperial/US customary system, primarily used in the US, UK, and Canada for everyday measurements. The Slug belongs to the imperial/US customary system.
History of the Ton (UK) and Slug
of the Long Ton
Medieval Origins: The Tun (c. 1200-1500)
The Wine Trade:
- The word "ton" derives from "tun" (Old English tunne, Middle English tonne), meaning a large cask or barrel
- A tun was a standard wine cask in medieval England holding approximately 252 wine gallons (~954 liters, 210 Imperial gallons)
- When filled with wine, a tun weighed roughly 2,240 pounds, establishing the weight association
Early Standardization Attempts:
- 13th-14th centuries: English merchants used "ton" for both volume (liquids) and weight (bulk goods)
- Different commodities had varying ton definitions:
- Wool ton: Weight needed to fill shipping space (variable)
- Coal ton: Weight-based measurement
- Freight ton: Volume-based (40 cubic feet)
The Problem of Multiple Tons:
- Confusion in trade due to inconsistent ton definitions
- Disputes over cargo weight vs. volume
- Regional variations across England and continental Europe
Standardization: The Weights and Measures Act of 1824
Imperial System Codification:
- 1824: British Parliament passed the Weights and Measures Act under King George IV
- Unified and standardized British weights and measures across the Empire
- Officially defined the imperial ton as 2,240 pounds
- Based on existing practice: 20 hundredweight of 112 pounds each
Why 2,240 Pounds? The choice reflected established commercial practice:
- 1 hundredweight (cwt) = 112 pounds (8 stones × 14 pounds)
- 20 hundredweight = 2,240 pounds
- This matched the traditional weight of a tun of wine
- Integrated with existing Imperial units (stones, pounds, ounces)
Imperial Hundredweight System:
- 1 stone = 14 pounds
- 1 hundredweight = 8 stones = 112 pounds
- 1 ton = 20 hundredweight = 160 stones = 2,240 pounds
British Empire and Global Commerce (1824-1945)
Dominance of British Shipping:
- 19th century: Britain controlled ~60-70% of world merchant shipping tonnage
- British shipping companies used long tons for:
- Cargo capacity (deadweight tonnage)
- Ship displacement (weight of water displaced)
- Freight charges (cost per ton)
The Coal Trade:
- British coal powered the Industrial Revolution
- Coal universally measured in long tons
- Newcastle coal trade: Millions of long tons exported annually
- Coal exports to Europe, Americas, Asia all priced in long tons
Naval Architecture:
- Displacement tonnage: Weight of water displaced by a floating ship, measured in long tons
- Used to classify warship size: "10,000-ton cruiser," "50,000-ton battleship"
- Standard in Royal Navy and Commonwealth navies
- Example: HMS Dreadnought (1906): ~18,000 long tons displacement
Imperial Commodity Trade:
- Iron and steel: British iron production measured in long tons
- Grain: Commonwealth grain shipments (wheat, barley) in long tons
- Rubber, cotton, wool: Plantation exports measured in long tons
- Freight rates: Shipping costs typically £X per long ton
Global Adoption:
- British commercial dominance spread long ton usage
- Bills of lading (shipping documents) in long tons
- Maritime insurance: Cargo value calculated per long ton
- Port records: Cargo throughput recorded in long tons
American Divergence: The Short Ton
US Measurement Evolution:
- Early America inherited British Imperial units
- By mid-19th century, US customary system diverged
- Americans adopted a 100-pound hundredweight (simpler decimal-friendly base)
- US ton = 20 US hundredweight = 20 × 100 lb = 2,000 pounds (the "short ton")
Why the Difference?
- Simplicity: 100-pound hundredweight easier for calculation
- Independence: Post-colonial desire for distinct American standards
- Internal trade: US domestic commerce didn't require British compatibility
Terminology:
- Originally, both were simply called "ton" in their respective countries
- Early 20th century: International trade necessitated distinction
- British ton → "long ton"
- American ton → "short ton"
The Rise of the Metric Tonne (1875-Present)
Metric System Development:
- 1875: Metric Convention established international metric standards
- Metric tonne (or ton) defined as 1,000 kilograms (exactly)
- Decimal-based, simple, scientifically rational
Advantages Over Long/Short Tons:
- Exact decimal definition: 1 tonne = 1,000 kg (no fractions)
- Universal: Not tied to any national system
- SI-compatible: Integrates with scientific units
- Easier calculation: Decimal arithmetic vs. 2,240-pound conversions
Global Metrication Wave (1960s-1990s):
United Kingdom:
- 1965: UK government announced metrication program
- 1970s-1980s: Gradual transition in trade, industry, and commerce
- 1995: Most commercial transactions legally required to use metric units
- Long ton legacy: Persists in road signs (distances/heights) and some traditional contexts
Commonwealth Nations:
- Australia: Metrication 1970s, completed by 1988
- Canada: Metrication 1970s, officially adopted 1977-1980
- New Zealand: Metrication 1969-1976
- India: Adopted metric system post-independence (1947-1960s)
- South Africa: Metrication 1970s
Shipping and Maritime:
- International Maritime Organization (IMO): Encouraged metric units
- Modern cargo manifests typically in metric tonnes
- Shipping contracts, freight rates increasingly metric
Contemporary Usage (1990s-Present)
Where the Long Ton Survives:
1. Naval Displacement (UK and Commonwealth):
- Royal Navy still reports warship displacement in long tons (alongside metric)
- Royal Australian Navy, Royal Canadian Navy, Royal New Zealand Navy: Use long tons traditionally
- Example: HMS Queen Elizabeth aircraft carrier: ~65,000 long tons full load displacement
2. Historical Records:
- Pre-1990s British commercial records in long tons
- Archival shipping manifests, trade statistics, industrial production data
- Converting historical data requires long ton knowledge
3. Certain Industries:
- Some maritime insurance policies reference long tons in older contracts
- Vintage engineering specifications (bridges, railways built pre-metrication)
- Mining records: Historical coal, iron ore output
4. United States Context:
- When Americans refer to British/Commonwealth historical data, they may encounter long tons
- Rare in modern US usage (Americans use short tons domestically)
Gradual Obsolescence:
- Most modern international trade: metric tonnes
- Younger generations in UK/Commonwealth unfamiliar with long tons
- Likely to become purely historical unit within decades
The Imperial Weight-Mass Problem (Pre-1900)
Before the slug was invented, the imperial system created confusion between weight (force due to gravity) and mass (quantity of matter):
Common usage: "Pound" meant weight (what a scale measures on Earth)
- "This weighs 10 pounds" meant 10 pounds-force (10 lbf)
Scientific usage: "Pound" could mean mass (quantity of matter)
- "This has 10 pounds of mass" meant 10 pounds-mass (10 lbm)
The problem: Newton's laws of motion require distinguishing force from mass. Using "pound" for both led to:
- Confusion in physics calculations
- Need for awkward gravitational conversion constants
- Errors in engineering (mixing lbf and lbm)
Arthur Mason Worthington (1852-1916)
Arthur Mason Worthington was a British physicist and professor at the Royal Naval College, Greenwich, known for his pioneering work in:
- High-speed photography of liquid drops and splashes
- Physics education and textbook writing
- Developing clearer terminology for imperial units
Around 1900, Worthington recognized that the imperial system needed a mass unit analogous to the kilogram—a unit that would make Newton's second law (F = ma) work without conversion factors.
The Slug's Introduction (c. 1900-1920)
Worthington proposed the slug as a solution:
The name: "Slug" evokes sluggishness—the tendency of massive objects to resist acceleration (inertia). A more massive object is more "sluggish" in responding to forces.
The definition: 1 slug = mass that accelerates at 1 ft/s² under 1 lbf
The relationship: 1 slug = 32.174 lbm (approximately)
This ratio (32.174) is not arbitrary—it equals the standard acceleration due to gravity in ft/s² (g = 32.174 ft/s²). This means:
- On Earth's surface, a 1-slug mass weighs 32.174 lbf
- On Earth's surface, a 1-lbm mass weighs 1 lbf
Adoption in Engineering Education (1920s-1940s)
The slug gained acceptance in American and British engineering textbooks during the early 20th century:
Advantages recognized:
- Simplified dynamics calculations (F = ma without g_c)
- Clearer distinction between force and mass
- Consistency with scientific notation (separating weight from mass)
Textbook adoption: Engineering mechanics books by authors like Beer & Johnston, Meriam & Kraige, and Hibbeler introduced the slug to generations of engineering students
University courses: American aerospace and mechanical engineering programs taught dynamics using the FPS system with slugs
Aerospace Era Embrace (1940s-1970s)
The slug became essential in American aerospace during the mid-20th century:
NACA/NASA adoption (1940s-1970s):
- Aircraft performance calculations used slugs for mass
- Rocket dynamics required precise force-mass-acceleration relationships
- Apollo program documentation used slugs extensively
Military ballistics:
- Artillery trajectory calculations
- Rocket and missile design
- Aircraft carrier catapult systems
Engineering standards:
- ASME and SAE specifications sometimes used slugs
- Aerospace contractor documentation (Boeing, Lockheed, etc.)
Decline with Metrication (1960s-Present)
Despite its technical superiority, the slug declined for several reasons:
International metrication (1960s onward):
- Most countries adopted SI units (kilogram for mass, newton for force)
- International aerospace and scientific collaboration required metric
- Slug never gained traction outside English-speaking countries
Everyday unfamiliarity:
- People use pounds (lbm/lbf) in daily life, not slugs
- No one says "I weigh 5 slugs" (they say "160 pounds")
- Slug remained a technical unit, never entering popular vocabulary
Educational shifts:
- Even American universities increasingly teach SI units first
- Engineering courses present slugs as "alternative" or "legacy" units
Software standardization:
- Modern engineering software defaults to SI (kg, N, m)
- Maintaining slug support became maintenance burden
Where Slugs Survive Today
The slug persists in specific technical niches:
American aerospace engineering:
- Aircraft weight and balance calculations (sometimes)
- Rocket propulsion dynamics
- Legacy documentation from NASA programs
Mechanical engineering dynamics courses:
- Teaching Newton's laws in FPS units
- Demonstrating unit system consistency
Ballistics and defense:
- Military projectile calculations
- Explosive dynamics
Historical technical documentation:
- 20th-century engineering reports and specifications
- Understanding legacy systems and equipment
Common Uses and Applications: long tons vs slugs
Explore the typical applications for both Ton (UK) (imperial/US) and Slug (imperial/US) to understand their common contexts.
Common Uses for long tons
of the Long Ton in Modern Contexts
1. Naval and Maritime History
Researchers, naval historians, and museum curators working with historical ships and maritime records must understand long tons:
- Ship specifications: Displacement, cargo capacity, fuel capacity
- Archival documents: Shipping manifests, port records, naval reports
- Comparative analysis: Comparing historical ships to modern vessels
- Museum exhibits: HMS Victory, USS Constitution, RMS Titanic displays
Example: Understanding that HMS Hood's 42,000 long ton displacement = ~42,672 metric tonnes helps compare to modern carriers.
2. Royal Navy and Commonwealth Navies
British and Commonwealth naval forces still reference long tons:
- Official displacement figures: Warships listed in long tons (with metric equivalent)
- Naval doctrine: Historical continuity in naval architecture
- Training: Naval officers learn both systems
- Public relations: Press releases may include long ton figures for tradition
Modern Practice: Usually list both: "HMS Queen Elizabeth: 65,000 long tons (66,000 tonnes)"
3. Historical Research and Archives
Historians studying British Empire, Industrial Revolution, or maritime trade encounter long tons constantly:
- Economic history: Production statistics (coal, iron, steel, ships)
- Trade records: Import/export volumes
- Infrastructure: Railway freight, canal cargo
- Colonial economies: Plantation outputs (sugar, rubber, cotton)
Conversion Necessity: Comparing 19th-century British data (long tons) with modern data (metric tonnes) requires accurate conversion.
4. Vintage Engineering and Restoration
Engineers working with historic structures, machinery, or vehicles:
- Bridge load ratings: Victorian bridges specified in long tons
- Crane capacities: Historic cranes rated in long tons
- Railway heritage: Steam locomotives, heritage railways use long tons
- Industrial archaeology: Historic factories, mines with long ton specifications
Safety: Modern safety assessments must convert long ton ratings to metric.
5. Commodity Markets and Legal Documents
Occasionally, older contracts or legal documents reference long tons:
- Mining leases: Historic coal, iron ore extraction rights
- Shipping contracts: Old freight agreements still in force
- Insurance policies: Maritime insurance with long ton clauses
- Property deeds: Historical rights to extract/transport X long tons
Legal interpretation: Courts may need to convert long tons for enforcement.
6. Education and Reference
Students and general public encounter long tons in:
- History textbooks: British industrial production, maritime trade
- War histories: Shipping losses, munitions production
- Biographies: Figures like Brunel (engineering), Nelson (naval)
- Documentaries: Maritime history, industrial heritage
Confusion: Many confuse long ton, short ton, metric tonne without understanding differences.
7. International Trade (Rare, Legacy Contexts)
Very occasionally, long tons appear in:
- UK-Commonwealth trade: Older business relationships honoring traditional units
- Specific commodities: Niche markets with historical ties
- Contracts: Long-standing agreements referencing long tons
Trend: Rapidly disappearing as metrication completes and older contracts expire.
When to Use slugs
1. Aerospace Engineering and Aircraft Dynamics
Aerospace engineers use slugs when working in imperial units for aircraft and spacecraft calculations:
Aircraft weight and balance:
- Empty weight: 100,000 lbs = 3,108 slugs
- Loaded weight: 175,000 lbs = 5,440 slugs
- Center of gravity calculations using slugs for mass distribution
Rocket dynamics (Newton's F = ma):
- Thrust: 750,000 lbf
- Mass: 50,000 slugs (initial), decreasing as fuel burns
- Acceleration: F/m = 750,000 lbf / 50,000 slugs = 15 ft/s²
Orbital mechanics:
- Satellite mass in slugs
- Thrust-to-weight calculations
- Momentum and angular momentum in slug·ft/s units
2. Mechanical Engineering Dynamics
Engineering students and professionals analyze motion using slugs:
Newton's second law problems:
- Force: 50 lbf
- Acceleration: 10 ft/s²
- Mass: F/a = 50/10 = 5 slugs (no gravitational constant needed!)
Momentum calculations (p = mv):
- Car mass: 77.7 slugs (2,500 lbs)
- Velocity: 60 ft/s
- Momentum: p = 77.7 × 60 = 4,662 slug·ft/s
Rotational dynamics (moment of inertia):
- I = mr² (with mass in slugs, radius in feet)
- Flywheel: mass = 10 slugs, radius = 2 ft
- I = 10 × 2² = 40 slug·ft²
3. Ballistics and Projectile Motion
Military and firearms engineers use slugs for projectile calculations:
Artillery shell trajectory:
- Shell mass: 0.932 slugs (30 lbs)
- Muzzle force: 50,000 lbf
- Acceleration: a = F/m = 50,000/0.932 = 53,648 ft/s²
Bullet dynamics:
- Bullet mass: 0.000466 slug (150 grains = 0.0214 lbm)
- Chamber pressure force: 0.5 lbf (approximate average)
- Barrel acceleration calculation
Recoil analysis:
- Conservation of momentum (m_gun × v_gun = m_bullet × v_bullet)
- Gun mass: 6.22 slugs (200 lbs)
- Calculating recoil velocity in ft/s
4. Physics Education and Problem Sets
High school and college physics courses teaching imperial units:
Demonstrating unit consistency:
- Showing that F = ma works directly with slugs
- Contrasting with the g_c requirement when using lbm
Inclined plane problems:
- Block mass: 2 slugs
- Angle: 30°
- Friction force calculations in lbf
Atwood machine:
- Two masses in slugs
- Pulley system acceleration
- Tension forces in lbf
5. Automotive Engineering
Vehicle dynamics calculations using imperial units:
Braking force analysis:
- Car mass: 93.2 slugs (3,000 lbs)
- Deceleration: 20 ft/s² (emergency braking)
- Required braking force: F = ma = 93.2 × 20 = 1,864 lbf
Acceleration performance:
- Engine force (at wheels): 3,000 lbf
- Car mass: 77.7 slugs (2,500 lbs)
- Acceleration: a = F/m = 3,000/77.7 = 38.6 ft/s²
Suspension design:
- Spring force (F = kx) in lbf
- Sprung mass in slugs
- Natural frequency calculations
6. Structural Dynamics and Vibration
Engineers analyzing oscillating systems in imperial units:
Simple harmonic motion:
- F = -kx (Hooke's law, force in lbf)
- m = mass in slugs
- Natural frequency: ω = √(k/m) where m is in slugs
Seismic analysis:
- Building mass: distributed load in slugs per floor
- Earthquake force (F = ma) with acceleration in ft/s²
Mechanical vibrations:
- Damping force proportional to velocity
- Mass-spring-damper systems with m in slugs
7. Fluid Dynamics and Hydraulics
Flow and pressure calculations when using imperial units:
Momentum of flowing fluid:
- Mass flow rate: ṁ = ρAv (density in slug/ft³, area in ft², velocity in ft/s)
- Force on pipe bend: F = ṁΔv (in lbf)
Pipe flow:
- Water density: 1.938 slug/ft³ (at 68°F)
- Pressure drop calculations
- Pump power requirements
Aerodynamic forces:
- Drag force (lbf) = ½ ρ v² A C_D
- Air density: 0.00238 slug/ft³ (sea level, standard conditions)
Additional Unit Information
About Ton (UK) (long ton)
1. How many pounds are in a UK Ton (Long Ton)?
There are exactly 2,240 pounds in 1 UK long ton. This derives from the Imperial system's definition: 1 long ton = 20 hundredweight, and 1 Imperial hundredweight = 112 pounds, so 20 × 112 = 2,240 pounds. This standard was codified in the British Weights and Measures Act of 1824 and became the official weight unit across the British Empire for shipping, coal trade, and bulk commodities. The 2,240-pound long ton originated from the traditional weight of a "tun" (large wine cask) when filled, which medieval merchants found convenient for maritime commerce. Today, while largely replaced by metric tonnes in most contexts, the 2,240-pound definition remains unchanged in the few areas where long tons are still used, particularly Royal Navy ship displacement measurements.
2. Is a UK Ton larger than a US Ton?
Yes, a UK long ton (2,240 lb / 1,016 kg) is 12% larger than a US short ton (2,000 lb / 907 kg)—specifically, 240 pounds heavier. This difference arose because the UK retained the traditional 112-pound Imperial hundredweight (20 cwt = 2,240 lb), while the US adopted a simplified 100-pound hundredweight (20 cwt = 2,000 lb) in the 19th century. The 12% difference is significant in large-scale commerce: 10,000 US short tons = 8,929 UK long tons (a shortfall of 1,071 long tons). This discrepancy caused confusion in transatlantic trade, requiring contracts to specify "long tons" or "short tons" explicitly. The metric tonne (1,000 kg) was partly adopted internationally to eliminate this Anglo-American ambiguity, being nearly equal to the long ton (1.6% lighter) but defined in the universal decimal system.
3. How does the UK Ton compare to the metric ton?
A UK long ton (1,016.047 kg) is 1.6% heavier than a metric tonne (1,000 kg)—specifically, ~16 kg or ~35 pounds heavier. This near-equivalence made conversion relatively straightforward during metrication: 1 long ton ≈ 1.016 tonnes, and 1 tonne ≈ 0.984 long tons. For rough estimates, many treated them as approximately equal, but precision trade required exact conversion (error of 1.6% matters for large shipments). Example: 100,000 long tons = 101,605 metric tonnes (1,605-tonne difference). The metric tonne's advantage: exact decimal definition (1,000 kg) integrates seamlessly with SI units, whereas the long ton (2,240 lbs, odd historical number) requires complex conversions. Despite metrication, some UK contexts preserve long tons: Royal Navy still reports ship displacement in long tons alongside metric figures, maintaining centuries of naval tradition.
4. Why did Britain use 2,240 pounds instead of a round number?
The 2,240-pound definition arose organically from medieval commerce, not rational design. It derives from the Imperial hundredweight system: 1 cwt = 8 stones = 8 × 14 lbs = 112 pounds. Twenty hundredweight = 20 × 112 = 2,240 pounds. This system was based on stones (14 lbs, traditional for weighing people and goods) rather than decimal convenience. Additionally, the "tun" (wine cask) traditionally weighed ~2,240 lbs when full, reinforcing this standard. When the Weights and Measures Act of 1824 standardized British units, lawmakers codified existing practice rather than inventing new decimal-friendly numbers. Result: An Imperial system built on 14s, 16s, 112s, and 2,240s—functional but mathematically awkward compared to the metric system's base-10 simplicity. This complexity was a major driver of global metrication in the 20th century, as decimal systems (1,000 kg tonne) are far easier for calculation and international trade.
5. Do modern British ships still use long tons?
Yes, but with caveats. The Royal Navy still officially reports warship displacement in long tons alongside metric tonnes, preserving centuries of naval tradition. Example: HMS Queen Elizabeth (2017) is listed as 65,000 long tons (~66,000 tonnes) displacement. However, merchant shipping has almost entirely switched to metric tonnes following international maritime conventions and UK metrication (1965-1990s). Modern cargo ships, tankers, and container vessels specify capacity in metric tonnes (deadweight tonnage, cargo capacity). Engineering calculations, fuel consumption, and port documentation now use metric. The Royal Navy's continued use of long tons is primarily ceremonial and historical—engineers work in metric internally, but public-facing documents honor tradition. Most Commonwealth navies (Australia, Canada, New Zealand) similarly list both units. Prediction: As older naval officers retire, long tons may eventually disappear even from Royal Navy specifications, becoming purely a historical footnote.
6. When did the UK stop using long tons officially?
The UK's transition was gradual, not instantaneous: 1965: Government announced metrication program. 1970s-1980s: Industries progressively adopted metric units. 1995: Metrication of trade largely complete; the Weights and Measures Act 1985 required most goods sold by weight to use metric. However, "official" cessation is complex: Some sectors retain long tons (e.g., Royal Navy). Road signs still use miles (not metric). Pubs serve pints (568 ml, not 500 ml metric). Thus, metrication was incomplete: "soft" metrication allowed dual units. By the late 1990s-2000s, most commerce, manufacturing, and shipping had switched to metric tonnes, making long tons rare outside specific legacy contexts. Practically, long tons ceased being the default standard around 1990-2000, but they never disappeared entirely. Older Britons still think in stones/pounds for body weight, and tonnes sometimes mentally convert to long tons. Full cultural shift may take another generation.
7. What's the difference between a long ton and a freight ton?
Long ton and freight ton (also called measurement ton) measure different things: Long ton: Unit of weight = 2,240 pounds (1,016 kg). Freight ton (measurement ton): Unit of volume = 40 cubic feet (~1.133 cubic meters). Shipping charges historically used whichever gave the higher value: weight or volume. Why? Some cargo is dense and heavy (iron ore, coal): charged by weight (long tons). Other cargo is bulky but light (cotton bales, furniture): charged by volume (freight tons). Example: 1,000 cubic feet of cotton = 25 freight tons (1,000 ÷ 40). If it weighs only 10,000 lbs = 4.46 long tons, ship charges for 25 freight tons (higher). Conversely, 1,000 cubic feet of lead = 25 freight tons. If it weighs 70,000 lbs = 31.25 long tons, ship charges for 31.25 long tons (higher). This "weight or measurement, whichever greater" rule persists in modern shipping (now using metric tonnes and cubic meters, but same principle).
8. How did metrication affect industries that relied on long tons?
Metrication required massive reengineering, retraining, and record conversion: Coal mining: Decades of production data in long tons had to be converted for comparisons. Miners trained to think in long tons had to learn metric. Modern equipment calibrated in tonnes. Shipping: Bills of lading, cargo manifests, freight rates all converted to metric tonnes. Crane capacities, ship specifications re-rated. Steel industry: Furnace capacities, production targets, quality standards converted. Historical production comparisons required conversion factors. Agriculture: Grain yields (tons per acre → tonnes per hectare), livestock weights, feed quantities. Challenges: Elderly workers unfamiliar with metric. "Rounding errors" in conversion causing disputes (1,000 long tons ≠ 1,000 tonnes). Cost of replacing scales, signage, documentation. Benefits: International trade simplified (no long ton/short ton confusion). Decimal calculations easier. Integration with scientific/engineering standards. Transition pain: 1970s-1990s saw dual labeling, calculation errors, generational confusion. By 2000s, mostly smooth, but legacy long ton data remains in archives requiring ongoing conversion skills.
9. Why do some sources say "ton" while others say "tonne"?
The spelling distinguishes metric from non-metric: "Ton" (t-o-n): Generic term, historically means long ton (UK), short ton (US), or any ton. "Tonne" (t-o-n-n-e): Specifically refers to metric ton (1,000 kg). Also written "metric ton." The extra "ne" distinguishes it. Usage: British English: Often use "tonne" for metric, "ton" for Imperial/US. American English: Usually "ton" for short ton (domestic), "metric ton" (not "tonne") for 1,000 kg. International standards: SI prefers "tonne" for 1,000 kg to avoid confusion. Pronunciation: Both pronounced identically in English (sounds like "tun"). In practice: Context usually clarifies, but precise technical writing specifies: "long ton," "short ton," "metric tonne" (or "metric ton"). Ambiguity persists: A British naval historian might write "50,000 tons" meaning long tons, while a modern cargo manifest "50,000 tonnes" means metric. Recommendation: Always specify unit explicitly in technical contexts to prevent costly errors.
10. Can I still buy things by the long ton in the UK?
Legally: No, almost impossible. The Weights and Measures Act 1985 and subsequent regulations require most goods sold by weight to use metric units (kilograms, grams, tonnes). Imperial units can be supplementary (dual labeling), but metric must be primary. Violations result in fines. Exceptions: Some traditional items (loose goods in markets) tolerated Imperial informally, but legally must be metric. Practically: No modern British shop, supplier, or merchant sells bulk commodities by the long ton. Everything is tonnes (metric): coal (if still sold for heating, rare), aggregates (gravel, sand), scrap metal, agricultural products. Why?: Suppliers, scales, invoices, and logistics all metric. Even older Britons who remember long tons accept metric in commercial contexts. Historical context: Pre-1970s, coal merchants delivered "1 ton of coal" (long ton) to homes. Now, heating oil sold in litres, firewood in cubic meters. Legacy: Long tons only appear in historical records, naval references, vintage engineering specs—not retail or commerce.
11. What industries were most resistant to abandoning the long ton?
Shipping and maritime industries were most resistant, for several reasons: 1. International standardization concerns: Shipping was already internationalized; changing units required global coordination. Royal Navy and Commonwealth navies valued continuity of displacement measurements across centuries for comparing ship classes. 2. Existing infrastructure: Shipyards, cranes, dry docks all rated in long tons. Re-rating everything expensive. 3. Cultural tradition: "Tonnage" terminology deeply embedded in maritime law, insurance, and practice. Changing felt like severing heritage. 4. Training: Mariners, naval architects, shipbuilders trained in long tons for entire careers. Coal industry also resisted: Miners, colliery managers, and coal merchants used long tons for generations. Production targets, wage calculations, and rail freight all based on long tons. However, resistance eventually failed: Economic necessity (international trade efficiency) and generational change (younger workers learned metric in school) gradually shifted all industries. By 2000s, even holdouts largely surrendered, with long tons surviving only in niche ceremonial contexts (Royal Navy traditions) and historical references.
12. How do I convert historical British data in long tons to modern metric?
Step-by-step conversion:
1. Identify that it's long tons: Historical British/Commonwealth data (pre-1990s) in "tons" almost certainly means long tons. Verify context (if US source, might be short tons).
2. Use precise conversion factor: 1 long ton = 1.01604691 metric tonnes (or 1,016.0469088 kg exactly).
3. Multiply: Long tons × 1.01604691 = metric tonnes. Example: 50 million long tons of coal (1913 UK production) × 1.01604691 = 50.802 million metric tonnes.
4. For large datasets: Use spreadsheet formula: =A1*1.01604691 where A1 is long tons.
5. Check reasonableness: Long ton is ~1.6% heavier than metric tonne, so metric number should be slightly larger. If wildly different, error likely.
6. Rounding: For historical approximation, 1 long ton ≈ 1 tonne (ignoring 1.6%) often acceptable. For trade/finance, use precise factor.
7. Document conversion: When publishing converted data, note: "Converted from long tons using factor 1.01604691."
Common pitfall: Don't use 2,240 lbs → kg conversion (introduces rounding error). Use exact long ton to metric tonne factor.
About Slug (sl)
How is the slug defined?
Answer: 1 slug = 1 lbf / (1 ft/s²) — the mass that accelerates at 1 ft/s² under 1 lbf
The slug is defined through Newton's second law (F = ma):
Rearranging: m = F/a
Definition: If a force of 1 pound-force produces an acceleration of 1 foot per second squared, the mass is 1 slug.
In equation form: 1 slug = 1 lbf / (1 ft/s²)
This makes Newton's law work cleanly: F (lbf) = m (slugs) × a (ft/s²)
Alternative definition (equivalent): 1 slug = 32.174 pounds-mass (lbm)
This number (32.174) comes from standard Earth gravity: g = 32.174 ft/s²
How many pounds-mass are in a slug?
Answer: 1 slug = 32.174 pounds-mass (lbm) exactly
This relationship derives from the gravitational constant:
Standard gravity: g = 32.17405 ft/s² (exactly, by definition)
Weight-mass relationship: Weight (lbf) = Mass (lbm) × g / g_c
where g_c = 32.174 lbm·ft/(lbf·s²) (dimensional conversion constant)
On Earth: A mass of 1 lbm experiences a weight of 1 lbf Therefore: A mass of 32.174 lbm experiences a weight of 32.174 lbf
But also: A mass of 1 slug experiences a weight of 32.174 lbf (by definition)
Conclusion: 1 slug = 32.174 lbm
Example:
- Person: 160 lbm
- In slugs: 160 ÷ 32.174 = 4.97 slugs
Why is the slug unit used?
Answer: To simplify F = ma calculations in imperial units by eliminating the need for gravitational conversion constants
The problem without slugs:
Using pounds-mass (lbm) and pounds-force (lbf) in Newton's law requires:
F = ma / g_c
where g_c = 32.174 lbm·ft/(lbf·s²)
This is awkward and error-prone!
The solution with slugs:
Using slugs for mass and lbf for force, Newton's law is simple:
F = ma (no conversion constant!)
Example comparison:
Force: 100 lbf Acceleration: 5 ft/s² Mass = ?
Without slugs (using lbm): m = F × g_c / a = 100 × 32.174 / 5 = 643.48 lbm
With slugs: m = F / a = 100 / 5 = 20 slugs
Much simpler! (Though 20 slugs = 643.48 lbm, same physical mass.)
How do I convert between slugs and kilograms?
Answer: 1 slug = 14.5939 kg (multiply slugs by 14.5939 to get kg)
Slugs to kilograms: kg = slugs × 14.5939
Examples:
- 1 slug = 14.5939 kg
- 5 slugs = 5 × 14.5939 = 72.97 kg
- 10 slugs = 10 × 14.5939 = 145.94 kg
Kilograms to slugs: slugs = kg ÷ 14.5939 (or kg × 0.0685218)
Examples:
- 10 kg = 10 ÷ 14.5939 = 0.685 slugs
- 70 kg = 70 ÷ 14.5939 = 4.80 slugs
- 100 kg = 100 ÷ 14.5939 = 6.85 slugs
Quick approximation:
- 1 slug ≈ 14.6 kg
- 1 kg ≈ 0.069 slugs (roughly 1/15th slug)
Why don't people use slugs in everyday life?
Answer: Slugs are awkward for everyday masses and unfamiliar to the general public
Practical reasons:
1. Unfamiliar numbers: Converting common weights to slugs produces strange values
- "I weigh 5.6 slugs" sounds odd compared to "180 pounds"
- A gallon of milk is "0.26 slugs" vs. "8.6 pounds"
2. No tradition: Unlike pounds (used for centuries in commerce), slugs were invented for technical calculations only
3. Pounds work fine for daily life: The lbf/lbm ambiguity doesn't matter when you're just measuring weight on a scale
4. Imperial persistence: Americans use pounds because of cultural tradition, not technical correctness
Technical fields use slugs precisely because they eliminate ambiguity in force-mass calculations, but this advantage is irrelevant for grocery shopping or body weight.
Cultural reality: People will continue saying "pounds" for everyday masses, while engineers quietly use slugs behind the scenes.
What's the difference between a slug and a pound?
Answer: Slug measures mass; pound can mean either mass (lbm) or force/weight (lbf)
Slug:
- Always a unit of mass
- 1 slug = 32.174 lbm = 14.5939 kg
- Measures quantity of matter (inertia)
- Used in F = ma calculations
Pound-mass (lbm):
- Unit of mass
- 1 lbm = 1/32.174 slug = 0.453592 kg
- Quantity of matter
Pound-force (lbf):
- Unit of force (weight)
- Force exerted by 1 lbm under standard Earth gravity
- 1 lbf = force needed to accelerate 1 slug at 1 ft/s²
Relationship on Earth:
- 1 slug has a mass of 32.174 lbm
- 1 slug weighs (exerts a force of) 32.174 lbf on Earth
- 1 lbm weighs 1 lbf on Earth
Key insight: The numerical coincidence (1 lbm weighs 1 lbf on Earth) obscures the fact that mass and force are different physical quantities. Slugs eliminate this confusion.
Is the slug still used in engineering?
Answer: Yes, but rarely—mainly in American aerospace and dynamics courses
Where slugs are still used:
1. Aerospace engineering:
- NASA and aerospace contractors for some calculations
- Aircraft dynamics and performance
- Rocket propulsion when working in imperial units
2. Engineering education:
- Mechanical engineering dynamics courses
- Teaching Newton's laws with imperial units
- Demonstrating unit consistency
3. Defense/ballistics:
- Military projectile calculations
- Weapons systems analysis
4. Legacy documentation:
- Understanding 20th-century engineering reports
- Maintaining older systems specified in FPS units
Where slugs are NOT used:
- International engineering (uses kilograms)
- Daily life (people use pounds)
- Most modern engineering software (defaults to SI units)
- Scientific research (exclusively metric)
Current status: Declining but not extinct; maintained for continuity with older American engineering systems
Can I weigh myself in slugs?
Answer: Technically yes, but practically no—scales measure force (weight), not mass
The technical issue:
Bathroom scales measure weight (force in lbf or kg-force), not mass:
- They use a spring that compresses under gravitational force
- The readout is calibrated to show "pounds" or "kilograms"
Converting scale reading to slugs:
If your scale says "160 pounds" (meaning 160 lbf weight):
- Your mass = 160 lbm / 32.174 = 4.97 slugs
Or if metric scale says "70 kg" (meaning 70 kg-force weight):
- Your mass = 70 kg / 14.5939 = 4.80 slugs
Why people don't do this:
- Unfamiliar: "I weigh 5 slugs" sounds strange
- Extra math: Requires division by 32.174
- No benefit: Pounds work fine for personal weight tracking
Correct statement: "My mass is 4.97 slugs" (not "I weigh 4.97 slugs"—weight is measured in lbf!)
How does the slug relate to Newton's second law?
Answer: The slug is defined to make F = ma work directly with pounds-force and ft/s²
Newton's second law: Force = mass × acceleration
In slug system (FPS units):
- Force in pound-force (lbf)
- Mass in slugs (sl)
- Acceleration in feet per second squared (ft/s²)
Result: F (lbf) = m (slugs) × a (ft/s²)
Example:
- Mass: 2 slugs
- Acceleration: 15 ft/s²
- Force: F = 2 × 15 = 30 lbf
Why this works: The slug is defined such that 1 lbf accelerates 1 slug at 1 ft/s²
Contrast with lbm system (more complicated): F (lbf) = m (lbm) × a (ft/s²) / g_c
where g_c = 32.174 lbm·ft/(lbf·s²)
Same example using lbm:
- Mass: 2 slugs = 64.348 lbm
- Acceleration: 15 ft/s²
- Force: F = 64.348 × 15 / 32.174 = 30 lbf (same result, more complex calculation)
The slug's purpose: Eliminate the g_c conversion factor!
What does "slug" mean and where does the name come from?
Answer: "Slug" evokes sluggishness or inertia—the resistance of mass to acceleration
Etymology:
The term was coined by British physicist Arthur Mason Worthington around 1900.
The metaphor:
- Sluggish = slow to respond, resistant to movement
- Inertia = the tendency of massive objects to resist acceleration
- A more massive object is more "sluggish"
The connection to physics:
Inertial mass is the property of matter that resists acceleration:
- Larger mass → greater "sluggishness" → harder to accelerate
- Smaller mass → less "sluggish" → easier to accelerate
Example:
- Push a shopping cart (low mass) → accelerates easily (not very sluggish)
- Push a truck (high mass in slugs) → accelerates slowly (very sluggish!)
Word choice reasoning: Worthington wanted a vivid, memorable term that conveyed the physical concept of inertia while fitting the imperial system of units (slug, pound, foot).
Alternative names considered: The unit could have been called "inertia pound" or "force-pound," but "slug" was catchier and emphasized the conceptual link to resistance to motion.
Why is 1 slug equal to 32.174 pounds-mass specifically?
Answer: Because 32.174 ft/s² is the standard acceleration due to Earth's gravity (g)
The relationship derives from weight-force:
Weight (lbf) = mass (lbm) × gravity (ft/s²) / g_c
where g_c = 32.174 lbm·ft/(lbf·s²) is the dimensional conversion constant
On Earth (g = 32.174 ft/s²):
- 1 lbm weighs: 1 lbm × 32.174 / 32.174 = 1 lbf
Also by definition:
- 1 slug weighs: 1 slug × 32.174 ft/s² = 32.174 lbf (from F = ma)
Combining these:
- If 1 lbm weighs 1 lbf, and 1 slug weighs 32.174 lbf...
- Then 1 slug must equal 32.174 lbm!
The number 32.174 is Earth's standard gravitational acceleration: g = 32.17405 ft/s² ≈ 32.174 ft/s²
Consequence: The slug naturally relates to pounds-mass through Earth's gravity, even though the slug is a mass unit (not dependent on gravity).
On other planets:
- Mass is still measured in slugs (unchanged)
- Weight changes (different g value)
- Example: 1 slug on Moon weighs only 5.32 lbf (not 32.174 lbf)
Will the slug eventually disappear?
Answer: Likely yes—it's declining rapidly as engineering shifts to SI units globally
Factors driving obsolescence:
1. International standardization:
- Global engineering collaborations require common units (SI/metric)
- Slug is unknown outside U.S./British contexts
2. Educational shifts:
- Even American universities teach SI units first
- Slugs relegated to "alternative units" or historical notes
3. Software migration:
- Modern CAD/simulation software defaults to metric (kg, N, m)
- Maintaining slug support is extra development cost
4. Generational change:
- Engineers trained in FPS/slug units are retiring
- New graduates work primarily in metric
5. Daily life disconnect:
- Slug never entered common vocabulary (unlike "pound")
- No cultural attachment to preserve it
Where it might persist longest:
- Legacy aerospace systems (maintaining old aircraft/rockets)
- Specialized defense applications
- Historical engineering documentation
- Educational examples showing unit system consistency
Likely outcome: Slug will become a "historical unit" known primarily to:
- Engineering historians
- Those maintaining 20th-century equipment
- Educators explaining evolution of unit systems
Similar to how poundals (another imperial force unit) are now essentially extinct despite once being scientifically "correct."
Conversion Table: Ton (UK) to Slug
| Ton (UK) (long ton) | Slug (sl) |
|---|---|
| 0.5 | 34.811 |
| 1 | 69.621 |
| 1.5 | 104.432 |
| 2 | 139.243 |
| 5 | 348.107 |
| 10 | 696.213 |
| 25 | 1,740.534 |
| 50 | 3,481.067 |
| 100 | 6,962.134 |
| 250 | 17,405.336 |
| 500 | 34,810.671 |
| 1,000 | 69,621.342 |
People Also Ask
How do I convert Ton (UK) to Slug?
To convert Ton (UK) to Slug, enter the value in Ton (UK) in the calculator above. The conversion will happen automatically. Use our free online converter for instant and accurate results. You can also visit our weight converter page to convert between other units in this category.
Learn more →What is the conversion factor from Ton (UK) to Slug?
The conversion factor depends on the specific relationship between Ton (UK) and Slug. You can find the exact conversion formula and factor on this page. Our calculator handles all calculations automatically. See the conversion table above for common values.
Can I convert Slug back to Ton (UK)?
Yes! You can easily convert Slug back to Ton (UK) by using the swap button (⇌) in the calculator above, or by visiting our Slug to Ton (UK) converter page. You can also explore other weight conversions on our category page.
Learn more →What are common uses for Ton (UK) and Slug?
Ton (UK) and Slug are both standard units used in weight measurements. They are commonly used in various applications including engineering, construction, cooking, and scientific research. Browse our weight converter for more conversion options.
For more weight conversion questions, visit our FAQ page or explore our conversion guides.
Helpful Conversion Guides
Learn more about unit conversion with our comprehensive guides:
📚 How to Convert Units
Step-by-step guide to unit conversion with practical examples.
🔢 Conversion Formulas
Essential formulas for weight and other conversions.
⚖️ Metric vs Imperial
Understand the differences between measurement systems.
⚠️ Common Mistakes
Learn about frequent errors and how to avoid them.
All Weight Conversions
Other Weight Units and Conversions
Explore other weight units and their conversion options:
- Kilogram (kg) • Ton (UK) to Kilogram
- Gram (g) • Ton (UK) to Gram
- Milligram (mg) • Ton (UK) to Milligram
- Pound (lb) • Ton (UK) to Pound
- Ounce (oz) • Ton (UK) to Ounce
- Stone (st) • Ton (UK) to Stone
- Ton (metric) (t) • Ton (UK) to Ton (metric)
- Ton (US) (ton) • Ton (UK) to Ton (US)
- Microgram (µg) • Ton (UK) to Microgram
- Carat (ct) • Ton (UK) to Carat
Verified Against Authority Standards
All conversion formulas have been verified against international standards and authoritative sources to ensure maximum accuracy and reliability.
National Institute of Standards and Technology — US standards for weight and mass measurements
International Organization for Standardization — International standard for mechanics quantities
Last verified: December 3, 2025