Meter to Foot Converter
Convert meters to feet with our free online length converter.
Quick Answer
1 Meter = 3.28084 feet
Formula: Meter × conversion factor = Foot
Use the calculator below for instant, accurate conversions.
Our Accuracy Guarantee
All conversion formulas on UnitsConverter.io have been verified against NIST (National Institute of Standards and Technology) guidelines and international SI standards. Our calculations are accurate to 10 decimal places for standard conversions and use arbitrary precision arithmetic for astronomical units.
Meter to Foot Calculator
How to Use the Meter to Foot Calculator:
- Enter the value you want to convert in the 'From' field (Meter).
- The converted value in Foot will appear automatically in the 'To' field.
- Use the dropdown menus to select different units within the Length category.
- Click the swap button (⇌) to reverse the conversion direction.
How to Convert Meter to Foot: Step-by-Step Guide
Converting Meter to Foot involves multiplying the value by a specific conversion factor, as shown in the formula below.
Formula:
1 Meter = 3.28084 feetExample Calculation:
Convert 10 meters: 10 × 3.28084 = 32.8084 feet
Disclaimer: For Reference Only
These conversion results are provided for informational purposes only. While we strive for accuracy, we make no guarantees regarding the precision of these results, especially for conversions involving extremely large or small numbers which may be subject to the inherent limitations of standard computer floating-point arithmetic.
Not for professional use. Results should be verified before use in any critical application. View our Terms of Service for more information.
Need to convert to other length units?
View all Length conversions →What is a Meter and a Foot?
The meter (US spelling) or metre (International spelling) (symbol: m) is the base unit of length in the International System of Units (SI). It is one of the seven SI base units and forms the foundation for measuring distance in the metric system.
Modern Definition (1983): The meter is defined as the distance traveled by light in a vacuum in exactly 1/299,792,458 of a second. This definition links the meter to the speed of light, a fundamental constant of nature (c = 299,792,458 meters per second).
Key relationships:
- 1 meter = 100 centimeters (cm)
- 1 meter = 1,000 millimeters (mm)
- 1 meter = 0.001 kilometers (km)
- 1,000 meters = 1 kilometer
In terms of imperial/US customary units:
- 1 meter ≈ 3.28084 feet (ft) - Convert m to ft
- 1 meter ≈ 39.3701 inches (in) - Convert m to inches
- 1 meter ≈ 1.09361 yards (yd) - Convert m to yards
Visual perspective (how long is it?):
- 1 meter ≈ Length of a guitar
- 1 meter ≈ Distance from nose to fingertips (arm outstretched)
- 1 meter ≈ One adult step/stride
- 1 meter ≈ Width of a single bed
- 2 meters ≈ Standard doorway height
- 5 meters ≈ Length of a small car
It is the fundamental unit upon which all other SI length units are based through decimal multiplication or division.
Convert between length units: meter converter
The foot is a unit of length in the British imperial and United States customary systems of measurement. Since the international yard and pound agreement of 1959, one foot has been defined as exactly 0.3048 meters, which equals precisely 12 inches or 1/3 of a yard.
The foot is denoted by the symbol ft or by a single prime mark ′ (e.g., 6′ means 6 feet). When combined with inches, the notation uses both symbols: 5′-9″ means 5 feet, 9 inches (69 inches total, or approximately 1.75 meters).
The foot occupies a unique position in the imperial system as the most commonly used length unit for human-scale measurements—distances that relate directly to human body size, living spaces, and immediate environments. While inches handle smaller precision work and miles cover long distances, feet describe the comfortable middle ground of everyday human experience.
Note: The Meter is part of the metric (SI) system, primarily used globally in science and trade. The Foot belongs to the imperial/US customary system.
History of the Meter and Foot
-
Pre-Revolutionary France (Pre-1790s): France used hundreds of different local length units, creating confusion in trade and science. The need for a universal, standardized system became critical.
-
Birth of the Meter (1791-1793): During the French Revolution, the French Academy of Sciences proposed a new unit of length based on natural constants. They defined the meter as one ten-millionth (1/10,000,000) of the distance from the Earth's equator to the North Pole along the meridian passing through Paris.
-
Meridian Survey (1792-1799): Astronomers Pierre Méchain and Jean-Baptiste Delambre conducted a seven-year expedition to measure the meridian arc from Dunkirk to Barcelona to determine the exact length of the meter. This ambitious survey became legendary in scientific history.
-
Platinum Meter Bar (1799): Based on the meridian measurements, the first physical standard was created: a platinum bar stored in the French National Archives. This became the legal meter in France.
-
Treaty of the Metre (1875): Seventeen nations signed this international treaty, establishing the General Conference on Weights and Measures (CGPM) and the International Bureau of Weights and Measures (BIPM) to maintain global measurement standards.
-
International Prototype Meter (1889): A more precise platinum-iridium bar was created and designated as the international standard. This prototype was kept at the BIPM near Paris under controlled conditions (specific temperature, pressure, support points).
-
Krypton-86 Definition (1960): To improve accuracy and reproducibility, the meter was redefined as 1,650,763.73 wavelengths of the orange-red light emitted by krypton-86 atoms in a vacuum. This was the first definition based on atomic physics rather than a physical object.
-
Speed of Light Definition (1983): The current definition was adopted, fixing the speed of light at exactly 299,792,458 m/s and defining the meter based on this constant. This provided the most stable and reproducible definition possible, as the speed of light is a fundamental constant of nature.
-
Global Adoption: Today, the meter is used by virtually every country in the world. Only Liberia, Myanmar, and the United States have not fully adopted the metric system for everyday use, though even the US uses it extensively in science, medicine, and manufacturing.
-
Why It Matters: The meter's evolution from a physical bar to a definition based on universal constants represents humanity's quest for increasingly precise and universally accessible measurement standards.
The foot represents one of humanity's oldest measurement units, with origins predating written records.
Ancient Origins: The foot concept emerged independently in multiple ancient civilizations, all based on the approximate length of a human foot. The Egyptian royal cubit (20.6 inches) divided into smaller units approximating foot measurements. The Greek pous measured roughly 11.6 inches, while the Roman pes (foot) standardized at approximately 11.65 modern inches (296 mm).
Roman Influence: When Romans conquered Britain, they brought the pes, which heavily influenced British measurement traditions. The Roman foot divided into 12 unciae (inches), establishing the 12-inch relationship that persists today. Even after the Roman Empire fell, this measurement structure survived in English-speaking regions.
Medieval Variations: Throughout medieval Europe, foot measurements varied dramatically by region and ruler. Different "feet" existed simultaneously—the Tower foot, the London foot, and various guild-specific feet. King Henry I of England (r. 1100-1135) reportedly standardized the yard as the distance from his nose to his outstretched thumb, making the foot one-third of that distance.
Statute Definitions: In 1266, King Henry III's Composition of Yards and Perches defined relationships between feet, yards, and rods for land measurement. The 1324 statute by Edward II attempted further standardization, though regional variations persisted for centuries.
English Standardization: The British Weights and Measures Act of 1824 established the Imperial foot throughout the British Empire. This Imperial foot differed slightly from the US foot after American independence—the US maintained measurements from pre-1824 British standards.
1959 International Agreement: The international yard and pound agreement unified English-speaking countries. The United States, United Kingdom, Canada, Australia, New Zealand, and South Africa agreed that 1 yard equals exactly 0.9144 meters, making 1 foot exactly 0.3048 meters (304.8 mm). This ended over a century of slight differences between US and British feet.
US Survey Foot Retirement: From 1893 to 2023, the United States maintained two different feet—the international foot (0.3048 m exactly) and the US survey foot (0.30480061 m, or 1200/3937 meters). The survey foot was used for land surveys and mapping. On January 1, 2023, the National Geodetic Survey officially retired the US survey foot, making all American measurements use the international foot exclusively.
Aviation Standard: In 1947, the International Civil Aviation Organization (ICAO) standardized altitude measurements worldwide in feet. This remains universal today—even pilots in fully metric countries like France, Germany, and Japan report altitude in feet. This standardization prevents confusion and enhances safety in international aviation.
Common Uses and Applications: meters vs feet
Explore the typical applications for both Meter (metric) and Foot (imperial/US) to understand their common contexts.
Common Uses for meters
The meter is the fundamental length unit used across virtually all fields worldwide:
Science and Research
The universal standard in all scientific disciplines. Essential for maintaining consistency in international research and allowing scientists globally to share and compare results.
Scientific Applications:
- Physics experiments and calculations
- Chemistry lab measurements
- Biology specimen measurements
- Astronomy (often combined with larger units like megameters or astronomical units)
- Geology and earth sciences
- Medical research and diagnostics
Why meters in science:
- SI base unit ensures universal understanding
- Decimal system simplifies calculations
- Precise definition based on fundamental constants
- Required for publication in scientific journals
- Enables international collaboration
Convert for scientific work: meters to other units
Construction and Engineering
Standard unit for building plans, specifications, and measurements in most countries. Essential for architectural drawings, structural engineering, and construction site work.
Construction uses:
- Building dimensions and floor plans
- Material specifications (lumber, pipes, cables)
- Site surveying and land measurements
- Road and bridge design
- Utility installations
- Safety clearances and regulations
Engineering disciplines:
- Civil engineering (infrastructure, roads, dams)
- Mechanical engineering (machine design, tolerances)
- Electrical engineering (cable runs, installations)
- Structural engineering (building analysis)
Why meters dominate:
- International building codes
- Global supply chains use metric
- Simplified scaling (1:100, 1:50 drawings)
- Easy conversion between units (mm, cm, m, km)
Athletics and Sports
The standard for track and field events, swimming pools, and most international sports. Creates consistency in competition and record-keeping worldwide.
Track and Field:
- All race distances (100m, 200m, 400m, etc.)
- Field event measurements (high jump, long jump, javelin)
- Track dimensions (400m oval)
Swimming:
- Pool lengths (25m, 50m)
- Race distances
- Pool depth specifications
Other Sports:
- Soccer field dimensions
- Basketball court measurements (FIBA)
- Tennis court specifications
- Ski jump distances
World Records: All Olympic and international records use meters
Manufacturing and Industry
Essential for product design, quality control, and manufacturing specifications. Enables global supply chains and standardized parts.
Manufacturing uses:
- Product dimensions and tolerances
- Machine specifications
- Assembly line measurements
- Quality control standards
- Shipping container sizes
- Material cutting and fabrication
Industries:
- Automotive (car dimensions, parts)
- Aerospace (aircraft specifications)
- Electronics (component spacing)
- Textiles (fabric measurements)
- Furniture (product dimensions)
Everyday Life (Metric Countries)
Daily measurements for height, distance, and dimensions in 95% of the world's countries.
Personal measurements:
- Human height and weight
- Clothing sizes (combined with cm)
- Recipe distances (rare, but when needed)
- Home improvement projects
Shopping:
- Fabric by the meter
- Carpeting and flooring
- Curtains and blinds
- Garden hoses and cables
Driving:
- Road signs (distances in km, using meters as base)
- Vehicle dimensions
- Parking regulations
Use our meter converter for everyday conversions.
Aviation and Maritime
Critical for navigation, altitude, and safety specifications in international travel.
Aviation:
- Runway lengths
- Aircraft dimensions
- Altitude (often in feet, but meters in some regions)
- Visibility distances
Maritime:
- Ship dimensions
- Harbor depths (often in meters or fathoms)
- Vessel clearances
- Navigation distances
Medical and Healthcare
Standard for patient measurements and medical equipment in most healthcare systems worldwide.
Medical uses:
- Patient height
- Wound measurements
- Medical imaging distances
- Equipment specifications
- Hospital room dimensions
- Surgical instrument lengths
When to Use feet
Residential Construction and Remodeling
Home construction in America operates in feet for layout and square feet for area calculations. Foundation plans show exterior dimensions (e.g., 40' × 60' house footprint = 2,400 sq ft per floor). Interior walls use standard 8-foot studs for 8-foot ceiling heights, or 9-foot and 10-foot studs for taller ceilings.
Lumber lengths come in 2-foot increments: 6', 8', 10', 12', 14', 16' boards. This modular system allows efficient layout with minimal waste. A wall spanning 16 feet can use a single 16-foot top plate rather than joining shorter pieces.
Plywood and drywall sheets measure 4' × 8' (32 square feet per sheet). With standard 16-inch stud spacing, three studs span 48 inches (4 feet), perfectly matching sheet width. This dimensional coordination throughout the building industry stems from foot-based planning.
Standard door heights are 6'8" (80 inches), accommodating people up to about 6'5" with clearance. Door widths vary: 2'6" (30"), 2'8" (32"), 3'0" (36"). Window rough openings are specified in feet and inches: 3'0" × 4'0" window.
Architectural Design and Floor Plans
Architects draw floor plans at scales based on feet: 1/4" = 1'0" (common residential) or 1/8" = 1'0" (larger buildings). Blueprint dimensions appear as feet-inches notation: 12'-6" means 12 feet, 6 inches (150 inches total).
Room planning uses standard furniture dimensions understood in feet:
- Queen bed: approximately 5' × 6'8"
- King bed: approximately 6'4" × 6'8"
- Sofa: 6-8 feet long
- Dining table (seats 6): 3' × 6'
- Dining table (seats 8): 3'6" × 7'
Designers ensure adequate circulation space: 3 feet minimum for walkways, 4 feet preferred. A 12' × 15' bedroom comfortably fits a king bed with nightstands and leaves walkway space.
Building codes specify requirements in feet: egress windows must have 5.7 square feet of opening, stair landings must be at least 3 feet deep, hallways must be at least 3 feet wide.
Commercial Real Estate and Office Space
Commercial property leasing operates in square feet. Office space leases quote price per square foot annually: $30/sq ft/year means a 1,000 sq ft office costs $30,000 per year ($2,500/month). Retail space commands higher rates, often $40-100+/sq ft/year in prime locations.
Office planning uses square feet per employee: 150-250 sq ft per person including shared spaces, or 50-75 sq ft for individual workstations. A company with 50 employees needs approximately 7,500-12,500 square feet total.
Commercial buildings describe floor plate size in square feet: a 100' × 120' floor plate provides 12,000 sq ft of rentable space per floor. Column spacing (typically 20-30 feet in modern buildings) affects layout flexibility.
Retail space measures street frontage in feet—20 feet, 40 feet, 60 feet of storefront directly influences visibility and foot traffic. Corner locations with frontage on two streets command premium rent.
Swimming and Aquatics
Swimming pools use feet for all dimensions. A typical residential pool might measure 16' × 32' (512 sq ft surface area) with shallow end 3'6" and deep end 8'0". Lap pools are typically 8-10 feet wide by 40-50 feet long.
Competition pools follow precise foot-based specifications:
- Short course: 75 feet (25 yards, 6-8 lanes)
- Olympic pool: 164 feet (50 meters, 10 lanes) with 6'6" minimum depth
Pool safety regulations require depth markers at 3', 4', 5', 6', 8', and deeper. "NO DIVING" signs appear in areas less than 9 feet deep. These measurements help swimmers quickly assess safety.
Interior Design and Space Planning
Interior designers work in feet for furniture placement and room flow. Industry standards include:
- Seating area: 8' × 10' minimum for sofa, chairs, coffee table
- Dining area: Allow 3 feet per chair, 3-4 feet circulation around table
- Kitchen work triangle: 12-26 feet total (sum of distances between sink, stove, refrigerator)
- Island clearance: 3-4 feet on all sides for traffic flow
- TV viewing distance: 1.5-2.5× the diagonal screen size
A 12' × 18' living room (216 sq ft) allows space for a seating arrangement, TV console, and traffic flow. A 10' × 10' room (100 sq ft) feels cramped with more than a bed and dresser.
Window treatment specialists measure window width and height in feet and inches to calculate fabric requirements. Curtains typically extend 4-8 inches beyond window frame on each side, requiring precise foot-inch measurements.
Theater and Entertainment Venues
Stage dimensions, screen sizes, and venue layouts use feet:
- Proscenium width: 30-50 feet (typical theater)
- Stage depth: 20-40 feet
- Fly space: 60-80+ feet (above stage for scenery)
- Movie screen width: 40-90 feet (commercial theaters)
- IMAX screen: 72' × 52' (standard), 97' × 76' (largest)
Theatrical lighting positions specify trim height (distance from stage floor to light) in feet: 12', 18', 24'. Sound engineers place speakers based on feet of distance to achieve proper coverage—one speaker per 30-50 feet of venue length.
Venue capacity relates to square footage: 6-7 square feet per person for standing room, 10-12 sq ft per person for chair seating with aisles, 15-20 sq ft per person for banquet seating with tables.
Firefighting and Emergency Services
Fire departments specify equipment reach in feet: 75-foot aerial ladders, 100-foot platform trucks. Building codes restrict height based on fire equipment access—many jurisdictions limit wood-frame construction to 75 feet (roughly 7 stories) due to ladder reach limitations.
Hose lengths standardize at 50 feet or 100 feet. Firefighters calculate distance from hydrant to building entrance in feet to determine hose requirements. Water pressure calculations use feet of elevation: each foot of elevation change requires roughly 0.43 PSI pressure adjustment.
Emergency responders use feet for scene measurements: accident scenes, crime scenes, and disaster areas document positions and distances in feet. "Vehicle came to rest 150 feet beyond point of impact" provides clear spatial understanding.
Landscaping and Irrigation
Landscape contractors measure yards in feet for material calculations and cost estimates. Sod comes in rolls typically 2' × 5' (10 sq ft). Mulch, topsoil, and gravel calculate coverage in square feet at various depths: 1 cubic yard covers 324 sq ft at 1 inch depth, or 81 sq ft at 4 inches depth.
Irrigation system design uses feet for sprinkler spacing: 15-foot spacing for spray heads, 30-40 foot spacing for rotary heads. Drip irrigation calculates emitter placement in feet: 12-18 inches for flower beds, 2-3 feet for shrubs.
Tree planting requires spacing in feet based on mature spread: 15-20 feet apart for small trees, 30-40 feet for large shade trees, 50+ feet for massive specimens. "Plant trees 30 feet from building foundations" prevents root damage to structures.
Property grading specifies slope in inches per foot: 2-3 inches of drop per 10 feet of distance away from house foundations prevents water intrusion.
Additional Unit Information
About Meter (m)
How long is a meter visually?
One meter is about the distance from your nose to your fingertips when you extend your arm straight out to the side.
Visual comparisons:
- Slightly longer than a yard (1 m = 1.09 yards)
- About 3.3 feet (one adult stride)
- Length of a guitar (most acoustic guitars)
- Width of a single bed
- Slightly longer than a baseball bat
- Three average-sized rulers (30cm each)
Body measurements:
- Most adults can approximate 1 meter with arm span from nose to fingertips
- One large step/stride for most adults
- Height from ground to waist/hip for average adult
Common objects exactly 1 meter:
- Meter stick/ruler (by definition)
- Certain guitar models
- Standard yoga mat width (60cm) is just over half a meter
To remember: Think of it as "just over 3 feet" or "slightly longer than a yard"
How many feet are in a meter?
One meter equals approximately 3.28084 feet, commonly rounded to 3.28 feet.
Exact conversion: 1 meter = 3.280839895 feet
Practical conversions:
- 1 meter ≈ 3.28 feet
- 2 meters ≈ 6.56 feet
- 5 meters ≈ 16.4 feet
- 10 meters ≈ 32.8 feet
- 100 meters ≈ 328 feet
Reverse conversion (feet to meters):
- 1 foot = 0.3048 meters (exactly)
- 3 feet ≈ 0.91 meters
- 6 feet ≈ 1.83 meters
- 10 feet ≈ 3.05 meters
Why 3.28?
- Based on the international foot definition (0.3048 m)
- 1 meter ÷ 0.3048 meters/foot = 3.28084 feet
Quick estimation: Multiply meters by 3 for a rough approximation (though this underestimates by ~9%)
Use our meter to feet converter for accurate conversions.
How many centimeters are in a meter?
There are exactly 100 centimeters (cm) in one meter.
Why 100?: The prefix "centi-" means 1/100, so a centimeter is 1/100 of a meter.
Conversion:
- 1 meter = 100 centimeters
- To convert meters to cm: multiply by 100
- To convert cm to meters: divide by 100
Examples:
- 0.5 meters = 50 cm
- 1.5 meters = 150 cm
- 2.75 meters = 275 cm
- 50 cm = 0.5 meters
- 175 cm = 1.75 meters (typical adult height)
Remember: Move the decimal point two places:
- Meters → cm: Move right (1.5 m = 150 cm)
- Cm → meters: Move left (150 cm = 1.5 m)
Use our meter to cm converter for instant conversions.
Is the meter used in the United States?
Officially: The US uses the metric system in science, medicine, military, and many industries, but the US customary system (feet, inches, miles) dominates everyday life.
Where meters ARE used in the US:
- Science and research: All scientific work
- Medicine: Patient measurements, medical devices
- Military: NATO standardization requires metric
- Manufacturing: Especially for export products
- Athletics: Track and field events
- Pharmaceuticals: Drug measurements
- Automotive: Many car specifications
- Electronics: Component specifications
Where meters are NOT commonly used:
- Road signs (miles, not kilometers)
- Construction (feet, inches)
- Everyday conversation (height, distance)
- Cooking (cups, ounces, not liters/grams)
- Real estate (square feet, acres)
- Weather (Fahrenheit, not Celsius)
Status: The US is officially metric (Metric Conversion Act of 1975) but implementation is voluntary, so dual systems coexist.
Fun fact: US money is metric (100 cents = 1 dollar), but most Americans don't think of it that way!
How many meters are in a kilometer?
There are exactly 1,000 meters in one kilometer.
Why: "Kilo-" is a Greek prefix meaning 1,000.
Conversion:
- 1 kilometer (km) = 1,000 meters (m)
- To convert km to m: multiply by 1,000
- To convert m to km: divide by 1,000
Examples:
- 0.5 km = 500 meters
- 1.5 km = 1,500 meters
- 2.5 km = 2,500 meters
- 5 km = 5,000 meters
- 10 km = 10,000 meters
- 500 m = 0.5 km
- 2,000 m = 2 km
Perspective:
- A kilometer is a common walking distance (10-15 minutes)
- 5K race = 5 kilometers = 5,000 meters
- Marathon = 42.195 kilometers = 42,195 meters
Remember: Move the decimal point three places:
- Km → m: Move right (1.5 km = 1,500 m)
- M → km: Move left (1,500 m = 1.5 km)
Convert: meters to kilometers | kilometers to meters
How is the meter defined today?
Current Definition (since 1983): The meter is defined as the distance light travels in a vacuum in exactly 1/299,792,458 of a second.
Why this definition?:
- Universal constant: The speed of light (c) is the same everywhere in the universe
- Extremely precise: Can be reproduced in any properly equipped laboratory
- No physical artifact: Doesn't depend on a prototype bar that could degrade
- Fundamentally stable: Based on physics, not human-made objects
What this means:
- The speed of light is fixed at exactly 299,792,458 meters per second
- This definition links length to time (which is measured even more precisely)
- Any lab with an atomic clock can reproduce the meter
Historical evolution:
- 1793: Earth meridian (1/10,000,000 of equator to pole)
- 1889: Platinum-iridium bar in Paris
- 1960: Krypton-86 wavelengths
- 1983: Speed of light (current definition)
Why it matters: This makes the meter one of the most precisely defined and reproducible units in all of science.
What's the difference between meter and metre?
No difference - they are the same unit, just different spellings!
Spelling variations:
- Meter: American English spelling (US, Philippines)
- Metre: International English spelling (UK, Canada, Australia, most other English-speaking countries)
Symbol: Both use m as the abbreviation
In practice:
- Scientific papers: Usually "metre" (international standard)
- US publications: Usually "meter"
- International Bureau (BIPM): Uses "metre"
- Both are 100% correct
Other metric units with dual spellings:
- Liter / Litre
- Centimeter / Centimetre
- Kilometer / Kilometre
Remember: The spelling doesn't affect the measurement - 1 meter = 1 metre = 1 m
How do you convert meters to inches?
To convert meters to inches, multiply by approximately 39.3701.
Conversion formula: inches = meters × 39.3701
Examples:
- 1 meter = 39.37 inches
- 2 meters = 78.74 inches
- 5 meters = 196.85 inches
- 0.5 meters = 19.69 inches
- 1.5 meters = 59.06 inches
Reverse conversion (inches to meters):
- 1 inch = 0.0254 meters (exactly)
- 12 inches (1 foot) = 0.3048 meters
- 36 inches (1 yard) = 0.9144 meters
Why 39.37?
- 1 meter = 100 cm
- 1 inch = 2.54 cm (exactly)
- 100 cm ÷ 2.54 cm/inch = 39.37 inches
Quick mental math:
- 1 meter ≈ 40 inches (close enough for rough estimates)
- 2.5 cm ≈ 1 inch, so 100 cm ≈ 40 inches
Use our meter to inches converter for precise conversions.
What is 2 meters in feet and inches?
2 meters = 6 feet 6.74 inches (or approximately 6 feet 7 inches)
Calculation:
- 2 meters = 6.56168 feet
- 6 full feet = 6 feet
- 0.56168 feet × 12 inches/foot = 6.74 inches
- Result: 6 feet 6.74 inches ≈ 6' 7"
Common 2-meter comparisons:
- Standard doorway height: 2-2.1 meters (6'7" - 6'11")
- Tall person height: 2 meters is very tall (99th percentile)
- Basketball player: Many NBA players are around 2 meters
- High jump bar: Elite athletes clear around 2 meters
Rounded conversions:
- 2.0 m = 6' 7"
- 2.1 m = 6' 11"
- 2.2 m = 7' 3"
Quick reference:
- 1.5 m = 4' 11"
- 1.8 m = 5' 11" (average adult male height)
- 2.0 m = 6' 7"
- 2.5 m = 8' 2"
Convert any height: meters to feet and inches
How many meters is a football field?
American Football:
- Playing field: 100 yards = 91.44 meters
- With end zones: 120 yards = 109.73 meters
- Width: 53.33 yards = 48.76 meters
Soccer/Football (International):
- Length: 100-110 meters (typical), 90-120 meters (FIFA rules)
- Width: 64-75 meters (typical), 45-90 meters (FIFA rules)
- Standard pitch: 105 × 68 meters
Common comparisons:
- 100 meters ≈ 1 American football field (length only, not counting end zones)
- 100 meters = 109.4 yards (9.4 yards longer than American football field)
- "100-meter dash" ≈ Length of American football field + 9 yards
Useful reference: "100 meters" is a standard way to visualize distance - slightly longer than an American football field.
Why is the meter important?
The meter is the foundation of the metric system, used by 95% of the world's population and essential for global science, trade, and communication.
Scientific importance:
- Base unit of SI system (international standard)
- Defined by fundamental constant (speed of light)
- Essential for all scientific research
- Enables global collaboration
Practical importance:
- Universal measurement standard
- Simplifies international trade
- Decimal-based (easy calculations)
- Used in manufacturing, construction, medicine
Global standardization:
- Ensures products fit across borders
- Aircraft, ships, vehicles have standard dimensions
- Medical equipment is universally compatible
- Scientific data can be shared internationally
Historical significance:
- Represents the Enlightenment ideal of universal standards
- First measurement based on nature (Earth meridian)
- Now based on fundamental physics (speed of light)
- Symbol of international cooperation
Modern life:
- GPS and navigation systems
- International sports records
- Global supply chains
- Scientific advancement
Bottom line: The meter makes global communication, commerce, and science possible.
About Foot (ft)
How many inches are in a foot?
There are exactly 12 inches in 1 foot. This relationship is fundamental to the imperial measurement system and has remained constant since ancient Roman times, when the pes (foot) was divided into 12 unciae (inches).
The 12-inch division offers mathematical convenience—12 is evenly divisible by 2, 3, 4, and 6, making fractional measurements easier in practical work. You can divide a foot into halves (6"), thirds (4"), quarters (3"), or sixths (2") with whole-number results.
Converting feet to inches: Multiply feet by 12
- 5 feet = 5 × 12 = 60 inches
- 7.5 feet = 7.5 × 12 = 90 inches
Converting inches to feet: Divide inches by 12
- 72 inches = 72 ÷ 12 = 6 feet
- 100 inches = 100 ÷ 12 = 8.33 feet = 8 feet, 4 inches
Mixed notation: 5'9" means 5 feet, 9 inches = (5 × 12) + 9 = 69 inches total.
How many feet are in a yard?
There are exactly 3 feet in 1 yard. This relationship dates back to medieval English measurements, where the yard represented a stride or the distance from the nose to an outstretched thumb of King Henry I.
The yard serves as a larger unit convenient for measuring fabric, sports fields, and medium distances. In American football, progress is measured in yards (first down = 10 yards = 30 feet), but field dimensions are often specified in feet (field width = 160 feet = 53⅓ yards).
Converting yards to feet: Multiply yards by 3
- 10 yards = 10 × 3 = 30 feet
- 100 yards = 100 × 3 = 300 feet (length of football field)
Converting feet to yards: Divide feet by 3
- 90 feet = 90 ÷ 3 = 30 yards (baseball base paths)
- 18 feet = 18 ÷ 3 = 6 yards (first down in football)
How many feet are in a mile?
There are exactly 5,280 feet in 1 mile. This seemingly arbitrary number results from historical compromises between different English measurement systems.
Historical origin: The Roman mile (mille passus) measured 1,000 paces (about 5,000 feet). Medieval England used furlongs for agricultural land measurement (660 feet = 1 furlong). Queen Elizabeth I standardized the mile in 1593 as exactly 8 furlongs, making 1 mile = 8 × 660 = 5,280 feet.
Common conversions:
- 1 mile = 5,280 feet
- 0.5 mile = 2,640 feet
- 0.25 mile = 1,320 feet
- 1,000 feet = 0.189 miles (about 3 city blocks)
Why it matters: Aircraft measure runway length in feet (7,000-foot runway, 10,000-foot runway), while navigation uses nautical miles (6,076 feet) or statute miles (5,280 feet). Real estate describes proximity in feet for nearby amenities ("500 feet to park") and miles for distant locations ("3 miles to downtown").
What's the difference between feet and square feet?
Feet (linear feet) measure distance in one dimension—length along a line. Use feet for measuring height, room length, fence lines, rope, baseboards, or any one-dimensional measurement.
Square feet measure area in two dimensions—the surface of a two-dimensional space. Use square feet for flooring, walls, ceilings, land area, or any flat surface.
The relationship: Square feet = length (in feet) × width (in feet)
- A room 12 feet long × 15 feet wide = 180 square feet
- A wall 10 feet wide × 8 feet tall = 80 square feet
Why confusion happens: A room with 54 linear feet of baseboard (12+15+12+15) contains 180 square feet of floor area. These are different measurements of the same room—perimeter versus area.
Cost implications: Contractors price differently:
- Fencing: $15-40 per linear foot installed
- Flooring: $3-12 per square foot installed
- Painting: $2-6 per square foot
Always clarify whether a price quote is per linear foot or per square foot—the difference is substantial.
Why does aviation use feet for altitude worldwide?
Aviation universally uses feet for altitude measurement, even in countries that otherwise use metric exclusively, for safety and standardization. This system was established by the International Civil Aviation Organization (ICAO) in 1947.
Historical reason: When commercial aviation developed in the 1920s-1940s, British and American manufacturers dominated, and altimeters measured in feet. As aviation became international, standardizing on the existing system proved safer and cheaper than converting all aircraft instruments and training.
Safety benefits: Universal altitude standards prevent confusion during international flights. When a French pilot, Japanese air traffic controller, and American pilot all say "flight level three-five-zero," everyone knows it means 35,000 feet. No conversion errors, no miscommunication, no accidents from unit confusion.
Vertical separation: Aircraft flying opposite directions maintain 1,000-foot vertical separation (2,000 feet above 29,000'). This separation is calibrated into procedures, training, and equipment worldwide. Changing to meters would require recalibrating countless procedures and risking lives during the transition.
Exceptions: China and Russia use meters for some domestic operations below 29,500 feet, but convert to feet-based flight levels for international flights and at high altitudes. This hybrid system is gradually shifting toward full feet-based standards.
Practical result: Pilots must understand feet regardless of nationality. Pilot training worldwide includes feet-based altitude management, making it one of the few truly universal measurements.
How do I convert feet to meters accurately?
To convert feet to meters, multiply by 0.3048. This is the exact conversion factor established by the 1959 international agreement.
Formula: meters = feet × 0.3048
Examples:
- 1 foot = 1 × 0.3048 = 0.3048 meters
- 5 feet = 5 × 0.3048 = 1.524 meters
- 6 feet = 6 × 0.3048 = 1.8288 meters
- 10 feet = 10 × 0.3048 = 3.048 meters
- 100 feet = 100 × 0.3048 = 30.48 meters
Reverse conversion (meters to feet): Divide by 0.3048, or multiply by 3.28084
- 1 meter = 1 ÷ 0.3048 = 3.28084 feet
- 5 meters = 5 × 3.28084 = 16.404 feet
- 10 meters = 10 × 3.28084 = 32.808 feet
Quick mental approximation: For rough estimates, remember 1 meter ≈ 3.3 feet (or more precisely, 3.28 feet). This gives close results:
- 10 meters ≈ 33 feet (actual: 32.8 feet)
- 100 meters ≈ 330 feet (actual: 328 feet)
For professional work requiring precision (construction, engineering, manufacturing), always use the exact factor 0.3048 rather than approximations.
What does feet-inches notation mean?
The notation 5′-9″ (or 5'9") means 5 feet, 9 inches. The single prime ′ (or apostrophe ') represents feet, while the double prime ″ (or quote ") represents inches.
Reading the notation:
- 6′ = six feet = 72 inches
- 6″ = six inches = 0.5 feet
- 5′-9″ = five feet, nine inches = 69 inches total = 5.75 feet decimal
- 12′-6½″ = twelve feet, six and a half inches = 150.5 inches = 12.542 feet decimal
Why the dash? The dash or hyphen between feet and inches makes the notation clearer in blueprints and prevents confusion. Without it, 5'9" might be misread, though the prime symbols make the meaning clear.
Common uses:
- Human height: "She's 5'6" tall"
- Room dimensions: "12' × 15' bedroom"
- Construction drawings: Wall length shown as 24'-3½"
Converting to total inches: Multiply feet by 12, then add inches:
- 5'9" = (5 × 12) + 9 = 60 + 9 = 69 inches
Converting from total inches: Divide by 12 for feet, use remainder for inches:
- 75 inches = 75 ÷ 12 = 6 remainder 3 = 6'3"
Why is the foot still used instead of meters?
The United States continues using feet instead of meters primarily due to infrastructure investment, industry standardization, and cultural identity—not because feet offer any technical advantage.
Infrastructure costs: Converting to metric would require replacing billions of feet-based measurements throughout American infrastructure:
- 4 million miles of road signs showing feet/miles
- Building codes and standards written in feet
- Millions of blueprints, survey records, and property deeds
- Construction materials sized in feet (8' studs, 4'×8' sheets)
- Manufacturing equipment calibrated in decimal feet (thousandths of an inch)
Estimated conversion cost: $370 billion to $1 trillion.
Industry standardization: American construction, real estate, aviation, and manufacturing operate entirely in feet. Changing would require:
- Retraining millions of workers
- Replacing tools, measuring devices, and equipment
- Converting countless technical documents
- Updating software systems and databases
Cultural familiarity: Americans instinctively understand feet—"six feet tall," "ten feet away," "twenty feet deep." These measurements connect to body scale and everyday experience. Most Americans don't have intuitive feel for meters, making conversion feel arbitrary and confusing.
Partial adoption: The US actually uses metric in science, medicine, military, and some industries. Soft drinks come in liters, track races use meters, pharmaceuticals dose in milligrams. Americans live in a hybrid system.
Failed conversions: The 1975 Metric Conversion Act made metric "preferred" but voluntary. Without enforcement, most industries continued with feet. Public backlash against metric road signs in the 1980s ended highway conversion attempts.
International exceptions: Aviation worldwide uses feet for altitude. Maritime navigation uses nautical miles and fathoms. Even metric countries maintain some imperial measurements in specific contexts, showing that pure metric conversion isn't always practical or necessary.
How much is an acre in feet?
One acre equals 43,560 square feet. This measurement originates from medieval English land measurement, where an acre represented the amount of land a yoke of oxen could plow in one day.
Common acre configurations:
- 1 acre = 43,560 square feet
- 1 acre ≈ 208.7 feet × 208.7 feet (if square)
- 1 acre = 660 feet × 66 feet (one furlong × one chain, historical farming measurement)
Practical examples:
- 0.25 acre = 10,890 sq ft ≈ 104.4' × 104.4' (quarter-acre suburban lot)
- 0.5 acre = 21,780 sq ft ≈ 147.6' × 147.6'
- 2 acres = 87,120 sq ft ≈ 295.2' × 295.2'
- 5 acres = 217,800 sq ft ≈ 466.7' × 466.7'
Football field comparison: An American football field including end zones measures 360 feet × 160 feet = 57,600 square feet = 1.32 acres. Without end zones, the playing field (300' × 160') is 48,000 sq ft = 1.1 acres.
Why it matters: Real estate describes land in acres but building sites in square feet or lot dimensions in feet. A half-acre lot might be 150' × 145', or 100' × 218'—multiple configurations yield the same area. Knowing the conversion helps visualize land size when shopping for property.
Zoning impact: Minimum lot sizes appear in ordinances as both acres and square feet: "0.5 acre minimum" = "21,780 square feet minimum." Subdivisions calculate density in units per acre: 4 houses per acre, 12 apartments per acre.
What's the origin of "six feet under"?
The phrase "six feet under" meaning burial or death originates from traditional grave depth—coffins were buried approximately six feet below ground surface.
Historical practice: The six-foot depth became standard in England during the 1665 Great Plague of London. Officials ordered plague victims buried "at least six foot deep" to prevent disease spread and discourage grave robbers. This depth kept odors contained and protected bodies from scavengers.
Modern burial depth: Contemporary cemeteries typically bury caskets 4-6 feet deep, though some jurisdictions specify different depths. The "six feet" measurement became culturally embedded as the standard, even when actual practice varies.
Measurement significance: Six feet provides enough earth to protect the coffin from surface disturbance (weather, animals, agriculture) while remaining practical to dig manually. Deeper burials exponentially increase labor, while shallower burials risk exposure.
Cultural persistence: The phrase "six feet under" persists in English as a euphemism for death, demonstrating how foot-based measurements embedded themselves in language and culture beyond mere physical measurement.
Conversion Table: Meter to Foot
| Meter (m) | Foot (ft) |
|---|---|
| 0.5 | 1.64 |
| 1 | 3.281 |
| 1.5 | 4.921 |
| 2 | 6.562 |
| 5 | 16.404 |
| 10 | 32.808 |
| 25 | 82.021 |
| 50 | 164.042 |
| 100 | 328.084 |
| 250 | 820.21 |
| 500 | 1,640.42 |
| 1,000 | 3,280.84 |
People Also Ask
How do I convert Meter to Foot?
To convert Meter to Foot, enter the value in Meter in the calculator above. The conversion will happen automatically. Use our free online converter for instant and accurate results. You can also visit our length converter page to convert between other units in this category.
Learn more →What is the conversion factor from Meter to Foot?
The conversion factor depends on the specific relationship between Meter and Foot. You can find the exact conversion formula and factor on this page. Our calculator handles all calculations automatically. See the conversion table above for common values.
Can I convert Foot back to Meter?
Yes! You can easily convert Foot back to Meter by using the swap button (⇌) in the calculator above, or by visiting our Foot to Meter converter page. You can also explore other length conversions on our category page.
Learn more →What are common uses for Meter and Foot?
Meter and Foot are both standard units used in length measurements. They are commonly used in various applications including engineering, construction, cooking, and scientific research. Browse our length converter for more conversion options.
For more length conversion questions, visit our FAQ page or explore our conversion guides.
Helpful Conversion Guides
Learn more about unit conversion with our comprehensive guides:
📚 How to Convert Units
Step-by-step guide to unit conversion with practical examples.
🔢 Conversion Formulas
Essential formulas for length and other conversions.
⚖️ Metric vs Imperial
Understand the differences between measurement systems.
⚠️ Common Mistakes
Learn about frequent errors and how to avoid them.
All Length Conversions
Other Length Units and Conversions
Explore other length units and their conversion options:
- Kilometer (km) • Meter to Kilometer
- Hectometer (hm) • Meter to Hectometer
- Decimeter (dm) • Meter to Decimeter
- Centimeter (cm) • Meter to Centimeter
- Millimeter (mm) • Meter to Millimeter
- Inch (in) • Meter to Inch
- Yard (yd) • Meter to Yard
- Mile (mi) • Meter to Mile
- Nautical Mile (NM) • Meter to Nautical Mile
- Micrometer (μm) • Meter to Micrometer
Verified Against Authority Standards
All conversion formulas have been verified against international standards and authoritative sources to ensure maximum accuracy and reliability.
National Institute of Standards and Technology — Official US standards for length measurements
Bureau International des Poids et Mesures — International System of Units official documentation
Last verified: December 3, 2025