Micrometer to Parsec Converter
Convert micrometers to parsecs with our free online length converter.
Quick Answer
1 Micrometer = 3.240756e-23 parsecs
Formula: Micrometer × conversion factor = Parsec
Use the calculator below for instant, accurate conversions.
Our Accuracy Guarantee
All conversion formulas on UnitsConverter.io have been verified against NIST (National Institute of Standards and Technology) guidelines and international SI standards. Our calculations are accurate to 10 decimal places for standard conversions and use arbitrary precision arithmetic for astronomical units.
Micrometer to Parsec Calculator
How to Use the Micrometer to Parsec Calculator:
- Enter the value you want to convert in the 'From' field (Micrometer).
- The converted value in Parsec will appear automatically in the 'To' field.
- Use the dropdown menus to select different units within the Length category.
- Click the swap button (⇌) to reverse the conversion direction.
How to Convert Micrometer to Parsec: Step-by-Step Guide
Converting Micrometer to Parsec involves multiplying the value by a specific conversion factor, as shown in the formula below.
Formula:
1 Micrometer = 3.2408e-23 parsecsExample Calculation:
Convert 10 micrometers: 10 × 3.2408e-23 = 3.2408e-22 parsecs
Disclaimer: For Reference Only
These conversion results are provided for informational purposes only. While we strive for accuracy, we make no guarantees regarding the precision of these results, especially for conversions involving extremely large or small numbers which may be subject to the inherent limitations of standard computer floating-point arithmetic.
Not for professional use. Results should be verified before use in any critical application. View our Terms of Service for more information.
Need to convert to other length units?
View all Length conversions →What is a Micrometer and a Parsec?
A micrometer is a unit of length in the metric system equal to one millionth (1/1,000,000) of a meter. The term derives from the Greek "mikros" (small) and "metron" (measure). It is abbreviated as μm, where μ (mu) is the Greek letter representing the prefix "micro-."
Note on terminology: While "micron" was widely used from 1879 to 1967, it was officially deprecated by the International System of Units (SI) in favor of "micrometer" to maintain consistent naming conventions. However, "micron" remains common in some industries, particularly semiconductor manufacturing and filtration.
The micrometer sits between the millimeter and nanometer on the metric scale:
- 1 meter = 1,000,000 micrometers
- 1 millimeter = 1,000 micrometers
- 1 micrometer = 1,000 nanometers
This scale makes micrometers perfect for measuring objects visible under optical microscopes but invisible to the naked eye.
Convert Micrometers to Other Units →
and Standards
Geometric Definition
The parsec is defined through trigonometric parallax:
1 parsec = the distance at which 1 astronomical unit (AU) subtends an angle of 1 arcsecond (1″)
Mathematically:
- 1 parsec = 1 AU / tan(1″)
- Since 1″ = 1/3600 degree = π/648,000 radians ≈ 4.8481 × 10⁻⁶ radians
- For small angles: tan(θ) ≈ θ (in radians)
- 1 parsec ≈ 1 AU / 4.8481 × 10⁻⁶ ≈ 206,265 AU
Exact IAU Value
The International Astronomical Union (IAU) defines the parsec exactly as:
1 parsec = 648,000/π AU ≈ 206,264.806247 AU
Using the IAU-defined astronomical unit (1 AU = 149,597,870,700 meters exactly as of 2012):
1 parsec = 30,856,775,814,913,673 meters (exactly)
Or approximately:
- 3.0857 × 10¹⁶ meters
- 30.857 trillion kilometers
- 19.174 trillion miles
Relationship to Light-Year
The light-year (distance light travels in one Julian year) relates to the parsec:
1 parsec ≈ 3.26156 light-years
More precisely: 1 pc = 3.261563777 ly (using Julian year of 365.25 days)
Standard Multiples
Kiloparsec (kpc): 1 kpc = 1,000 pc ≈ 3,262 ly
- Used for distances within galaxies
- Milky Way diameter: ~30 kpc
Megaparsec (Mpc): 1 Mpc = 1,000,000 pc ≈ 3.26 million ly
- Used for intergalactic distances
- Andromeda Galaxy: ~0.77 Mpc
Gigaparsec (Gpc): 1 Gpc = 1,000,000,000 pc ≈ 3.26 billion ly
- Used for cosmological distances
- Observable universe radius: ~14 Gpc
Note: The Micrometer is part of the metric (SI) system, primarily used globally in science and trade. The Parsec belongs to the imperial/US customary system.
History of the Micrometer and Parsec
The concept of the micrometer emerged alongside the development of precision microscopy in the 17th and 18th centuries. As scientists like Robert Hooke and Antonie van Leeuwenhoek observed cells and microorganisms for the first time, they needed standardized ways to describe these microscopic dimensions.
The term "micron" (μ) was officially adopted at the First International Electrical Congress in Paris in 1879 as a convenient shorthand for one millionth of a meter. This simplified notation became widely used in scientific literature, particularly in biology, materials science, and optics.
In 1960, the International System of Units (SI) was established to create consistent naming conventions across all units. By 1967-1968, the SI officially deprecated "micron" in favor of "micrometer" to align with the systematic naming structure where prefixes like "micro-," "nano-," and "kilo-" are clearly indicated.
Despite this official change, the term "micron" persists in several industries:
- Semiconductor manufacturing: Process nodes like "5-micron technology"
- Filtration systems: "10-micron water filter"
- Materials science: Particle size specifications
- Aerospace: Surface finish requirements
The symbol μm is universally recognized in scientific and technical documentation, combining the Greek letter μ (representing the micro- prefix meaning 10⁻⁶) with m for meter.
Today, micrometers are fundamental to numerous high-precision fields, from medical diagnostics and semiconductor fabrication to quality control and environmental monitoring.
and Evolution
Pre-Parsec Era: The Parallax Quest (1600s-1830s)
The concept of stellar parallax dates to ancient Greek astronomy, but detecting it required centuries of technological advancement.
Galileo Galilei (1610) suggested that if Earth orbits the Sun, nearby stars should show annual parallax shifts against distant background stars. No parallax was detected, leading geocentrists to argue Earth must be stationary.
James Bradley (1728) discovered stellar aberration (apparent star position shifts due to Earth's orbital motion combined with finite light speed), confirming Earth's motion but still failing to detect parallax—stars were simply too distant.
Friedrich Wilhelm Bessel achieved the first successful parallax measurement in 1838 for 61 Cygni, determining a distance of about 10.3 light-years (3.16 parsecs, though the term didn't exist yet). This triumph came using a heliometer—a split-lens telescope enabling precise angular measurements.
Thomas Henderson measured Alpha Centauri's parallax (1832-1833, published 1839), and Friedrich Struve measured Vega's (1837), establishing parallax as the fundamental distance measurement method.
Coining the Term (1913)
Herbert Hall Turner (1861-1930), British astronomer and director of Oxford University Observatory, coined "parsec" in 1913. Before this, astronomers expressed stellar distances awkwardly:
- In astronomical units (requiring numbers in the hundreds of thousands)
- In light-years (popular but not directly tied to measurement method)
- In "parallax seconds" (inverse of parallax angle, but confusing terminology)
Turner recognized that astronomers naturally thought in terms of parallax angles. For a star with parallax angle p (in arcseconds), the distance d is simply:
d (in parsecs) = 1 / p (in arcseconds)
This elegant relationship made the parsec immediately practical. A star with 0.5″ parallax is 2 parsecs away; 0.1″ parallax means 10 parsecs; 0.01″ parallax means 100 parsecs.
IAU Adoption (1922-1938)
The 1922 IAU General Assembly in Rome endorsed the parsec as the standard unit for stellar distances, though adoption wasn't immediate or universal.
The 1938 IAU General Assembly in Stockholm formally standardized the parsec definition based on the astronomical unit and arcsecond, solidifying its status.
By the 1950s, the parsec dominated professional astronomy literature, though popular science continued preferring light-years for general audiences.
Space Age Precision (1960s-Present)
Hipparcos satellite (1989-1993): European Space Agency mission measured parallaxes for 118,000 stars with milliarcsecond precision, extending reliable parsec-based distances to hundreds of parsecs.
Gaia mission (2013-present): ESA's Gaia spacecraft has revolutionized astrometry, measuring parallaxes for 1.8 billion stars with microarcsecond precision. This extends direct parsec measurements to 10,000+ parsecs (10+ kiloparsecs), mapping our galaxy's structure in unprecedented detail.
2012 IAU redefinition: The IAU redefined the astronomical unit as exactly 149,597,870,700 meters (no longer based on Earth's actual orbit, which varies slightly). This made the parsec exactly 648,000/π AU, providing a stable definition independent of Earth's orbital variations.
Common Uses and Applications: micrometers vs parsecs
Explore the typical applications for both Micrometer (metric) and Parsec (imperial/US) to understand their common contexts.
Common Uses for micrometers
1. Microscopy and Biology
Micrometers are the standard unit for measuring cells, bacteria, and other microorganisms under optical microscopes. Lab technicians and researchers use calibrated eyepiece scales marked in micrometers to measure biological specimens. Cell biology, microbiology, and histology all depend on micrometer measurements for specimen identification and analysis.
2. Semiconductor Manufacturing
The semiconductor industry uses micrometers (often called "microns") to specify process node sizes, though modern chips have moved to nanometer scales. Wafer thickness (typically 725 μm for 300mm wafers), photoresist layers, and older chip features are measured in micrometers. Quality control requires precise measurements to ensure manufacturing tolerances.
3. Precision Engineering
Manufacturing engineers specify tolerances in micrometers for high-precision components. CNC machining, grinding, and polishing operations achieve accuracies of ±1-10 μm. Measuring instruments like micrometers (the tool) can measure to 0.001 mm = 1 μm precision. Critical aerospace, medical device, and automotive components require micrometer-level quality control.
4. Fiber Optics and Telecommunications
Fiber optic cables have core diameters measured in micrometers: single-mode fibers typically use 8-10 μm cores, while multi-mode fibers range from 50-62.5 μm. The precise core diameter determines light transmission characteristics, bandwidth, and distance capabilities. Telecom technicians reference these specifications when installing and troubleshooting fiber networks.
5. Filtration and Air Quality
Filter manufacturers rate products by the size of particles they capture, measured in micrometers. HEPA filters capture 99.97% of particles ≥0.3 μm. Water filters, air purifiers, and industrial filtration systems all use micrometer ratings. Environmental agencies track PM2.5 (particulate matter <2.5 μm) and PM10 pollution, which pose respiratory health risks.
6. Medical Diagnostics
Medical laboratories measure blood cells in micrometers: red blood cells average 6-8 μm, while variations may indicate conditions like anemia. Pathologists examine tissue samples and tumor margins at micrometer scale. Medical device manufacturing (catheters, needles, implants) requires micrometer-precision specifications for safety and efficacy.
Convert Medical Measurements →
7. Surface Finish and Coatings
Surface roughness is measured in micrometers using parameters like Ra (average roughness). A mirror finish might be <0.1 μm Ra, while machined surfaces range from 0.8-25 μm Ra. Coating thickness—paint, anodizing, plating—is specified in micrometers to ensure corrosion protection and aesthetic quality.
When to Use parsecs
Stellar Astronomy and Parallax Measurements
The parsec's primary use is measuring stellar distances via trigonometric parallax:
Parallax formula: d (parsecs) = 1 / p (arcseconds)
Ground-based observatories: Measure parallaxes to ~0.01″ accuracy, reliable to ~100 pc
Hipparcos satellite: Measured parallaxes to ~0.001″ (1 milliarcsecond), reliable to ~1,000 pc (1 kpc)
Gaia spacecraft: Measures parallaxes to ~0.00001″ (10 microarcseconds) for bright stars, reliable to ~10 kpc for many stars
Applications:
- Calibrating the cosmic distance ladder (using Cepheid variables, RR Lyrae stars)
- Determining absolute magnitudes of stars
- Studying stellar populations and galactic structure
- Measuring proper motions and space velocities
Galactic Structure and Dynamics
Kiloparsecs (kpc) describe structures within galaxies:
Milky Way structure:
- Galactic center (Sagittarius A*): 8.2 kpc from Sun
- Galactic disk radius: ~15 kpc
- Central bulge: ~1.5 kpc radius
- Spiral arms: trace patterns 10-15 kpc in radius
- Dark matter halo: extends to ~60 kpc
Rotation curves: Plot orbital velocity vs. distance (in kpc) from galactic center, revealing dark matter
Star formation regions: Giant molecular clouds span 10-100 pc
Globular clusters: Orbit 10-60 kpc from galactic center
Extragalactic Astronomy
Megaparsecs (Mpc) measure distances between galaxies:
Galaxy surveys: Map millions of galaxies to distances of 1,000+ Mpc, revealing large-scale structure (walls, filaments, voids)
Tully-Fisher relation: Links galaxy rotation speed to luminosity, enabling distance estimates in Mpc
Type Ia supernovae: Standard candles for measuring distances to 1,000+ Mpc
Galaxy clusters: Typical separation between major clusters ~10-50 Mpc
Superclusters: Structures spanning 100-200 Mpc (like Laniakea Supercluster containing Milky Way)
Cosmology and Universe Expansion
Megaparsecs and gigaparsecs describe cosmological distances:
Hubble constant (H₀): Measured in km/s per Mpc—describes universe expansion rate
- Current value: H₀ ≈ 67-73 (km/s)/Mpc (tension between measurement methods)
- Interpretation: Galaxy 1 Mpc away recedes at ~70 km/s; 100 Mpc away recedes at ~7,000 km/s
Hubble's Law: v = H₀ × d (where d is in Mpc, v is recession velocity)
Comoving distance: Cosmological distance accounting for universe expansion, measured in Mpc or Gpc
Redshift surveys: Map galaxy distribution to 1,000+ Mpc (z ~ 0.1-0.3 redshift)
Baryon acoustic oscillations: ~150 Mpc characteristic scale in galaxy distribution, used as "standard ruler"
Astrophysical Research Papers
Parsecs are the default distance unit in professional astronomy journals:
Observational papers: Report star/galaxy distances in pc, kpc, or Mpc
Theoretical models: Express scale lengths in parsecs (e.g., "disk scale length of 3 kpc")
Computer simulations: Use parsec-based units (or comoving kpc/Mpc for cosmological sims)
Standard convention: Professional astronomers think and calculate in parsecs, converting to light-years only for public communication
Additional Unit Information
About Micrometer (μm)
Is a micrometer the same as a micron?
Yes, micrometer and micron refer to the same unit: one millionth of a meter (1×10⁻⁶ m or 1 μm). The term "micron" (symbol: μ) was officially used from 1879 to 1967 but was deprecated by the International System of Units (SI) in favor of "micrometer" to maintain consistent naming conventions.
Despite being officially deprecated, "micron" remains common in several industries:
- Semiconductor manufacturing ("5-micron process")
- Filtration ("10-micron filter")
- Materials science (particle size specifications)
In scientific and technical writing, "micrometer" (μm) is the preferred term, but both are universally understood.
How many micrometers are in a millimeter?
There are 1,000 micrometers (μm) in 1 millimeter (mm). This makes sense when you consider the metric prefixes:
- "Milli-" means one thousandth (1/1,000)
- "Micro-" means one millionth (1/1,000,000)
Since a micrometer is 1,000 times smaller than a millimeter, dividing 1 mm into 1,000 equal parts gives you 1 μm per part.
Examples:
- 0.5 mm = 500 μm
- 0.1 mm = 100 μm
- 0.075 mm = 75 μm (typical human hair)
Convert Millimeters to Micrometers →
What are some examples of things measured in micrometers?
Biological:
- Bacteria: 1-10 μm (E. coli ≈ 2 μm)
- Red blood cells: 6-8 μm
- Human hair diameter: 50-100 μm
- Pollen grains: 10-100 μm
Technology:
- Fiber optic core: 8-62.5 μm (depending on type)
- Semiconductor features: 0.01-10 μm (older processes)
- Surface roughness: 0.1-25 μm (machining)
Materials:
- Paint thickness: 25-100 μm
- Plastic wrap: 10-15 μm
- Paper thickness: 70-100 μm
Essentially, anything visible under an optical microscope but invisible to the naked eye is measured in micrometers.
How do I convert micrometers to inches?
To convert micrometers to inches, multiply by 0.00003937 (or divide by 25,400).
Formula: inches = micrometers × 0.00003937
Examples:
- 100 μm × 0.00003937 = 0.003937 inches (≈ 0.004")
- 1,000 μm × 0.00003937 = 0.03937 inches (≈ 0.04")
- 2,540 μm × 0.00003937 = 0.1 inches
For context, 1 inch = 25,400 μm (or 25.4 mm), so micrometers are extremely small when expressed in imperial units.
Convert Micrometers to Inches →
Can the human eye see micrometers?
The human eye's resolution limit is approximately 50-100 micrometers under ideal conditions. This means:
Barely visible (with perfect vision):
- Thick human hair: 100 μm
- Fine sand grains: 100-500 μm
- Large dust particles: 100+ μm
Invisible without magnification:
- Bacteria: 1-10 μm
- Red blood cells: 6-8 μm
- Fine dust: <50 μm
- Most microorganisms: <50 μm
To see objects smaller than ~50 μm, you need a microscope. Optical microscopes can resolve features down to about 0.2 μm (200 nm), while electron microscopes can see structures at the nanometer scale.
What is the difference between micrometer and nanometer?
A micrometer (μm) equals one millionth of a meter (10⁻⁶ m), while a nanometer (nm) equals one billionth of a meter (10⁻⁹ m). This means 1 micrometer = 1,000 nanometers.
Scale comparison:
- Micrometer scale: bacteria, cells, human hair (1-100 μm)
- Nanometer scale: viruses, molecules, atoms (1-100 nm)
Examples:
- Red blood cell: 7,000 nm = 7 μm
- Coronavirus particle: 100 nm = 0.1 μm
- DNA helix width: 2 nm = 0.002 μm
- Silicon atom: 0.2 nm = 0.0002 μm
Optical microscopes work at the micrometer scale, while electron microscopes are needed for nanometer-scale imaging.
Convert Micrometers to Nanometers →
How accurate are micrometer measuring tools?
A micrometer (the measuring instrument, also called a "mike") typically measures with an accuracy of ±0.001 mm (±1 μm) for standard models, and ±0.0001 mm (±0.1 μm) for digital precision models.
Types and accuracy:
- Standard mechanical: ±0.001 mm (±1 μm)
- Vernier micrometer: ±0.001 mm (±1 μm)
- Digital micrometer: ±0.0005-0.001 mm (±0.5-1 μm)
- High-precision digital: ±0.0001 mm (±0.1 μm)
Accuracy depends on:
- Tool quality and calibration
- Temperature (thermal expansion affects readings)
- Operator technique (proper force and reading)
- Workpiece surface condition
For even higher precision, coordinate measuring machines (CMMs) and optical comparators can achieve sub-micrometer accuracy in controlled environments.
Why was "micron" deprecated?
The International System of Units (SI) deprecated "micron" in 1967-1968 to maintain consistent naming conventions across all metric units. The SI system uses standard prefixes (micro-, nano-, kilo-, etc.) combined with base units (meter, gram, second) to create derived units.
Reasons for change:
- Consistency: "Micrometer" follows the pattern of millimeter, nanometer, kilometer
- Clarity: Combines "micro-" (10⁻⁶) with "meter" to clearly indicate the scale
- International standardization: Reduces confusion in scientific communication
- Symbol standardization: μm is unambiguous, while μ alone could be confused with other uses
Why "micron" persists:
- Shorter and easier to say ("micron" vs "micrometer")
- Decades of industry usage before 1967
- Well-established in semiconductor, filtration, and materials industries
- No confusion in context (everyone knows what "10-micron filter" means)
In formal scientific writing, use "micrometer (μm)" for SI compliance.
What equipment measures in micrometers?
Precision measuring instruments:
- Micrometer caliper (the tool): Measures dimensions to ±1 μm accuracy
- Dial indicator: Measures displacement to ±1-5 μm
- Coordinate Measuring Machine (CMM): Sub-micrometer accuracy
- Optical comparator: Projects magnified image for micrometer-scale inspection
- Laser interferometer: Measures to nanometer/sub-micrometer accuracy
Microscopy equipment:
- Optical microscope: With calibrated eyepiece scales (reticles) marked in micrometers
- Confocal microscope: 3D imaging with micrometer resolution
- Scanning Electron Microscope (SEM): Nanometer resolution but calibrated in micrometers
Surface analysis:
- Surface roughness tester (profilometer): Measures Ra, Rz in micrometers
- Thickness gauge: Coating thickness to ±1 μm
- Film thickness measurement: Non-contact optical methods
Quality control:
- Particle size analyzers: Measure suspended particles in micrometers
- Laser diffraction instruments: Characterize powders and emulsions
How is micrometer used in air quality standards?
Air quality standards use micrometers to classify particulate matter (PM) by size, which determines health impacts:
PM10 (Particulate Matter <10 μm):
- Includes dust, pollen, mold
- Can reach lungs but often trapped in nose/throat
- EPA 24-hour standard: 150 μg/m³
PM2.5 (Particulate Matter <2.5 μm):
- Includes combustion particles, smoke, fine dust
- Small enough to enter deep into lungs and bloodstream
- EPA 24-hour standard: 35 μg/m³
- More dangerous than PM10 due to deep lung penetration
Why size matters:
- >10 μm: Trapped in nose and throat
- 2.5-10 μm: Can reach upper respiratory tract and lungs
- <2.5 μm: Can penetrate deep into lungs and enter bloodstream
- <0.1 μm (ultrafine): Can cross into organs and brain
Filter effectiveness:
- HEPA filters: Capture 99.97% of particles ≥0.3 μm
- N95 masks: Filter 95% of particles ≥0.3 μm
- Standard HVAC filters: Typically 3-10 μm particle capture
Understanding micrometer-scale particle sizes is critical for respiratory health, especially for vulnerable populations.
Convert Air Quality Measurements →
About Parsec (pc)
What does "parsec" stand for?
Parsec is a portmanteau of "parallax of one arcsecond."
It represents the distance at which Earth's orbital radius (1 AU) subtends an angle of exactly one arcsecond (1/3600 of a degree). British astronomer Herbert Hall Turner coined the term in 1913 to provide a convenient unit directly tied to the parallax measurement method.
How is a parsec measured?
Parsecs are measured using trigonometric parallax:
- Observe a nearby star from Earth when Earth is on one side of its orbit
- Observe the same star six months later when Earth is on the opposite side
- Measure the apparent shift in the star's position against distant background stars
- Half this shift is the parallax angle p (in arcseconds)
- Calculate distance: d = 1/p parsecs
Modern method: Space telescopes like Gaia measure parallax angles with microarcsecond precision, enabling distance measurements to thousands of parsecs.
Is a parsec bigger than a light-year?
Yes, one parsec is significantly larger:
1 parsec ≈ 3.26 light-years
More precisely: 1 pc = 3.261563777 ly
Example: Proxima Centauri at 1.3 parsecs equals 4.24 light-years away.
Why the difference matters: Confusing parsecs with light-years introduces 3× error in distances.
Why do astronomers prefer parsecs over light-years?
Astronomers prefer parsecs for several reasons:
1. Direct observational connection: Parallax angle p (arcseconds) directly gives distance d = 1/p (parsecs). No complicated conversion needed.
2. Professional standard: IAU endorsed parsecs in 1922; they're now universal in research papers and textbooks.
3. Convenient multiples: Kiloparsecs (kpc) for galactic distances, megaparsecs (Mpc) for cosmological distances provide natural scales.
4. Hubble constant units: Universe expansion rate naturally expressed in (km/s)/Mpc.
5. Definition stability: Light-year depends on year length definition (tropical, Julian, sidereal); parsec defined purely by geometry.
Light-years remain popular in public communication because "year" is familiar, while "parallax arcsecond" requires technical knowledge.
How many astronomical units are in a parsec?
1 parsec = 206,265 astronomical units (AU) (approximately)
More precisely: 1 pc = 206,264.806247 AU
This number arises from: 1 pc = 1 AU / tan(1″), and since 1″ = π/648,000 radians:
- 1 pc = 1 AU / (π/648,000) = 648,000/π AU ≈ 206,265 AU
Context: Since 1 AU ≈ 150 million km (Earth-Sun distance), 1 parsec ≈ 31 trillion km.
What is a kiloparsec and megaparsec?
Kiloparsec (kpc): 1 kpc = 1,000 parsecs ≈ 3,262 light-years
- Used for: Galactic-scale distances
- Examples: Sun to Milky Way center (8 kpc), galaxy diameters (10-50 kpc)
Megaparsec (Mpc): 1 Mpc = 1,000,000 parsecs ≈ 3.26 million light-years
- Used for: Intergalactic distances, cosmology
- Examples: Andromeda Galaxy (0.77 Mpc), Virgo Cluster (16.5 Mpc), Hubble constant measured in (km/s)/Mpc
Gigaparsec (Gpc): 1 Gpc = 1,000,000,000 parsecs ≈ 3.26 billion light-years
- Used for: Large-scale cosmological structures
- Example: Observable universe radius (~14 Gpc)
Is the parsec an SI unit?
No, the parsec is not an SI unit. The SI unit of length is the meter (m).
However, the parsec is:
- Recognized by the IAU (International Astronomical Union)
- Accepted for use with SI in astronomy contexts
- Defined exactly in terms of the AU (which is defined exactly in meters)
Why not SI?: The parsec arose naturally from astronomical practice and remains far more practical than expressing stellar distances in meters (which would require numbers like 10¹⁶ to 10²³).
Analogy: Like the electronvolt (eV) in particle physics, the parsec is a specialized unit indispensable to its field despite not being SI.
How far can parallax measure distances?
Ground-based telescopes: ~0.01 arcsecond precision → reliable to ~100 parsecs
Hubble Space Telescope: ~0.001 arcsecond (1 milliarcsecond) → reliable to ~1,000 parsecs (1 kpc)
Hipparcos satellite (1989-1993): ~0.001 arcsecond → 118,000 stars measured to 100-1,000 pc
Gaia spacecraft (2013-present): ~0.00001 arcsecond (10 microarcseconds) for bright stars → reliable to ~10,000 parsecs (10 kpc)
- Measured 1.8 billion stars
- Revolutionary precision enables mapping entire Milky Way disk
Fundamental limit: Stars beyond 10-20 kpc have unmeasurably small parallaxes with current technology. For greater distances, astronomers use indirect methods (Cepheids, Type Ia supernovae, redshift).
Did Han Solo make the Kessel Run in "less than 12 parsecs"?
Famous Star Wars quote: "She made the Kessel Run in less than twelve parsecs."
The issue: Parsec measures distance, not time. Saying "less than 12 parsecs" for a speed achievement is like saying "I drove to work in less than 5 miles."
Fan explanations (retroactive justifications):
- The Kessel Run involves navigating near black holes; a shorter distance means a more dangerous, direct route
- Skilled pilots can shave distance by flying closer to gravitational hazards
- This reinterprets "12 parsecs" as boasting about route optimization, not speed
Real answer: George Lucas likely confused parsecs with a time unit when writing the script. The line became famous enough that later writers invented explanations making it technically correct.
Takeaway: In real astronomy, parsecs always measure distance, never time.
How do parsecs relate to the Hubble constant?
The Hubble constant (H₀) describes universe expansion and is typically expressed as:
H₀ ≈ 70 (km/s)/Mpc
Interpretation: For every megaparsec of distance, recession velocity increases by ~70 km/s.
Examples using Hubble's Law (v = H₀ × d):
- Galaxy 1 Mpc away: recedes at ~70 km/s
- Galaxy 10 Mpc away: recedes at ~700 km/s
- Galaxy 100 Mpc away: recedes at ~7,000 km/s
- Galaxy 1,000 Mpc away: recedes at ~70,000 km/s
Hubble length: c/H₀ ≈ 4,400 Mpc (14.4 billion ly) - characteristic distance scale of observable universe
Why Mpc?: Using megaparsecs keeps Hubble constant values convenient (70 rather than 0.000000000070 if using parsecs, or 2.3 × 10⁻¹⁸ if using SI meters).
What's the farthest distance ever measured in parsecs?
Observable universe radius: ~14,000 Mpc = 14 Gpc (46 billion light-years comoving distance)
Most distant galaxy observed (as of 2023): JADES-GS-z13-0 at redshift z ≈ 13.2
- Comoving distance: ~4,200 Mpc (13.7 billion light-years light-travel distance)
- Due to universe expansion, it's now ~10,000 Mpc (32 billion light-years) away
Cosmic microwave background: Emitted 380,000 years after Big Bang
- Comoving distance to CMB surface: ~14,000 Mpc (46 billion light-years)
Beyond measurement: The observable universe has a finite size (~14 Gpc radius) due to finite age and light speed. Objects beyond this "cosmological horizon" are unobservable because their light hasn't reached us yet.
Conversion Table: Micrometer to Parsec
| Micrometer (μm) | Parsec (pc) |
|---|---|
| 0.5 | 0 |
| 1 | 0 |
| 1.5 | 0 |
| 2 | 0 |
| 5 | 0 |
| 10 | 0 |
| 25 | 0 |
| 50 | 0 |
| 100 | 0 |
| 250 | 0 |
| 500 | 0 |
| 1,000 | 0 |
People Also Ask
How do I convert Micrometer to Parsec?
To convert Micrometer to Parsec, enter the value in Micrometer in the calculator above. The conversion will happen automatically. Use our free online converter for instant and accurate results. You can also visit our length converter page to convert between other units in this category.
Learn more →What is the conversion factor from Micrometer to Parsec?
The conversion factor depends on the specific relationship between Micrometer and Parsec. You can find the exact conversion formula and factor on this page. Our calculator handles all calculations automatically. See the conversion table above for common values.
Can I convert Parsec back to Micrometer?
Yes! You can easily convert Parsec back to Micrometer by using the swap button (⇌) in the calculator above, or by visiting our Parsec to Micrometer converter page. You can also explore other length conversions on our category page.
Learn more →What are common uses for Micrometer and Parsec?
Micrometer and Parsec are both standard units used in length measurements. They are commonly used in various applications including engineering, construction, cooking, and scientific research. Browse our length converter for more conversion options.
For more length conversion questions, visit our FAQ page or explore our conversion guides.
Helpful Conversion Guides
Learn more about unit conversion with our comprehensive guides:
📚 How to Convert Units
Step-by-step guide to unit conversion with practical examples.
🔢 Conversion Formulas
Essential formulas for length and other conversions.
⚖️ Metric vs Imperial
Understand the differences between measurement systems.
⚠️ Common Mistakes
Learn about frequent errors and how to avoid them.
All Length Conversions
Other Length Units and Conversions
Explore other length units and their conversion options:
- Meter (m) • Micrometer to Meter
- Kilometer (km) • Micrometer to Kilometer
- Hectometer (hm) • Micrometer to Hectometer
- Decimeter (dm) • Micrometer to Decimeter
- Centimeter (cm) • Micrometer to Centimeter
- Millimeter (mm) • Micrometer to Millimeter
- Inch (in) • Micrometer to Inch
- Foot (ft) • Micrometer to Foot
- Yard (yd) • Micrometer to Yard
- Mile (mi) • Micrometer to Mile
Verified Against Authority Standards
All conversion formulas have been verified against international standards and authoritative sources to ensure maximum accuracy and reliability.
National Institute of Standards and Technology — Official US standards for length measurements
Bureau International des Poids et Mesures — International System of Units official documentation
Last verified: December 3, 2025